Savy, Davide ; Université de Liège - ULiège > Département GxABT > Plant Sciences
Brostaux, Yves ; Université de Liège - ULiège > Département GxABT > Modélisation et développement
Cozzolino, V.; Interdepartmental Research Centre of Nuclear Magnetic Resonance for the Environment, Agri-Food and New Materials, University of Naples Federico II, Naples, Italy, Department of Agricultural Sciences, Università di Napoli Federico II, Naples, Italy
Delaplace, Pierre ; Université de Liège - ULiège > Département GxABT > Plant Sciences
du Jardin, Patrick ; Université de Liège - ULiège > Département GxABT > Plant Sciences
Piccolo, A.; Interdepartmental Research Centre of Nuclear Magnetic Resonance for the Environment, Agri-Food and New Materials, University of Naples Federico II, Naples, Italy, Department of Agricultural Sciences, Università di Napoli Federico II, Naples, Italy
Language :
English
Title :
Quantitative Structure-Activity Relationship of Humic-Like Biostimulants Derived From Agro-Industrial Byproducts and Energy Crops
Aguiar N. O., Medici L. O., Olivares F. L., Dobbss L. B., Torres-Netto A., Silva S. F., et al. (2016). Metabolic profile and antioxidant responses during drought stress recovery in sugarcane treated with humic acids and endophytic diazotrophic bacteria. Ann. Appl. Biol. 168 203–213. 10.1111/aab.12256
Aguiar N. O., Novotny E. H., Oliveira A. L., Rumjanek V. M., Olivares F. L., Canellas L. P., (2013). Prediction of humic acids bioactivity using spectroscopy and multivariate analysis. J. Geochem. Explor. 129 95–102. 10.1016/j.gexplo.2012.10.005
Benjelloun-Mlayah B., Lopez S., Delmas M., (1997). Oil and paper pulp from Cynara cardunculus: preliminary results. Ind. Crops Prod. 6 233–236. 10.1016/s0926-6690(97)00013-7
Bollen K. A., (2002). Latent variables in psychology and the social sciences. Annu. Rev. Psychol. 53 605–634. 10.1146/annurev.psych.53.100901.135239 11752498
Canellas L. P., Dobbss L. B., Oliveira A. L., Chagas J. G., Aguiar N. O., Rumjanek V. M., et al. (2012). Chemical properties of humic matter as related to induction of plant lateral roots. Eur. J. Soil Sci. 63 315–324. 10.1111/j.1365-2389.2012.01439.x
Cha J.-Y., Kim T.-W., Choi J. H., Jang K.-S., Khaleda L., Kim W.-Y., et al. (2017). Fungal laccase-catalyzed oxidation of naturally occurring phenols for enhanced germination and salt tolerance of Arabidopsis thaliana: a green route for synthesizing humic-like fertilizers. J. Agric. Food Chem. 65 1167–1177. 10.1021/acs.jafc.6b04700 28112921
Cherubini F., (2010). The biore?nery concept: using biomass instead of oil for producing energy and chemicals. Energy Convers. Manag. 51 1412–1421. 10.1016/j.enconman.2010.01.015
Christersson L., (2008). Poplar plantations for paper and energy in the south of Sweden. Biomass Bioenergy 32 997–1000. 10.1016/j.biombioe.2007.12.018
Cimini D., Argenzio O., D’Ambrosio S., Lama L., Finore I., Finamore R., et al. (2016). Production of succinic acid from Basfia succiniciproducens up to the pilot scale from Arundo donax hydrolysate. Bioresour. Technol. 222 355–360. 10.1016/j.biortech.2016.10.004 27741473
Conte P., Spaccini R., Smejcalova D., Nebbioso A., Piccolo A., (2007). Spectroscopic and conformational properties of size-fractions separated from a lignite humic acid. Chemosphere 69 1032–1039. 10.1016/j.chemosphere.2007.04.043 17532364
Cotana F., Cavalaglio G., Gelosia M., Coccia V., Petrozzi A., Ingles D., et al. (2015). A comparison between SHF and SSSF processes from cardoon for ethanol production. Ind. Crops Prod. 9 424–432. 10.1016/j.indcrop.2015.02.064
De Bari I., Liuzzi F., Villone A., Braccio G., (2013). Hydrolysis of concentrated suspensions of steam pretreated Arundo donax. Appl. Energy 102 179–189. 10.1016/j.apenergy.2012.05.051
DeKock P. C., Vaughan D., (1975). Effects of some chelating and phenolic substances on the growth of excised pea root segments. Planta 126 187–195. 10.1007/BF00380623 24430162
Drosos M., Nebbioso A., Mazzei P., Vinci G., Spaccini R., Piccolo A., (2017). A molecular zoom into soil Humeome by a direct sequential chemical fractionation of soil. Sci. Total Environ. 15 807–816. 10.1016/j.scitotenv.2017.02.059 28214121
Drosos M., Savy D., Spiteller M., Piccolo A., (2018). Structural characterization of carbon and nitrogen molecules in the Humeome of two different grassland soils. Chem. Biol. Technol. Agric. 5:14.
Ertani A., Pizzeghello D., Baglieri A., Cadili V., Tambone F., Gennari M., et al. (2013). Humic-like substances from agro-industrial residues affect growth and nitrogen assimilation in maize (Zea mays L.) plantlets. J. Geochem. Explor. 129 103–111. 10.1016/j.gexplo.2012.10.001
Esbensen K. H., (2001). Multivariate Data Analysis – in Practice. An Introduction to Multivariate Data Analysis and Experimental Design. Trondheim: CAMO AS Publisher.
EU Fertilising Products Regulation (1009/2019). Regulation (EU) 2019/1009 of the European Parliament and of the Council of 5 June 2019 Laying Down Rules on the Making Available on the Market of EU Fertilising Products and Amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009 and Repealing Regulation (EC) No 2003/2003. Available online at: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ:L:2019:170:FULL&from=EN (accessed January 4, 2020).
Evtuguin D. V., Pascoal Neto C., Silva A. M. S., Domingues P. M., Amado F. M. L., Robert D., et al. (2001). Comprehensive study on the chemical structure of dioxane lignin from plantation Eucalyptus globulus wood. J. Agric. Food Chem. 49 4252–4261. 11559119
Faix O., Meier D., Beinhoff O., (1989). Analysis of lignocelluloses and lignins from Arundo donax L. and Miscanthus sinensis Anderss., and Hydroliquefaction of Miscanthus. Biomass 18 109–126. 10.1016/0144-4565(89)90088-7
Fukushima K., Terashima N., (1990). Heterogeneity in formation of lignin. XIII. Formation of p-hydroxyphenyl lignin in various hardwoods visualized by microautoradiography. J. Wood Chem. Technol. 10 413–433. 10.1080/02773819008050250
Garbero M., Ottonello P., Cotti C. M., Ferrero S., Torre P., Cherchi F., et al. (2010). Improved biomass pretreatment process. U.S. Patent No 2,010,113,129. Washington, DC: U.S. Patent and Trademark Office.
García A. C., De Souza L. G. A., Pereira M. G., Castro R. N., García-Mina J.-M., Zonta E., et al. (2016). Structure-property-function relationship in humic substances to explain the biological activity in plants. Sci. Rep. 6:20798. 10.1038/srep20798 26862010
Ge X., Xu F., Vadco-Correa J., Li Y., (2016). Giant reed: a competitive energy crop in comparison with Miscanthus. Renew. Sustain. Energy Rev. 54 350–362. 10.1016/j.rser.2015.10.010
Geyer W., Brüggemann L., Hanschmann G., (1998). Prediction of properties of soil humic substances from FTIR spectra using partial least squares regression. Int. J. Environ. Anal. Chem. 71 181–193. 10.1080/03067319808032626
Granata A., Argyropoulos D. S., (1995). 2-Chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane, a reagent for the accurate determination of the uncondensed and condensed phenolic moieties in lignins. J. Agric. Food Chem. 43 1538–1544. 10.1021/jf00054a023
Grand View Research (2019). Biostimulants Market Size, Share & Trends Analysis Report By Active Ingredient (Acid Based, Seaweed Extract, Microbial), By Crop Type (Row Crops & Cereals), By Application (Foliar, Soil), And Segment Forecasts, 2018 – 2025. Available online at: https://www.grandviewresearch.com/industry-analysis/biostimulants-market (accessed August 26, 2019).
Guizani C., Lachenal D., (2017). Controlling the molecular weight of lignosulfonates by an alkaline oxidative treatment at moderate temperatures and atmospheric pressure: a size-exclusion and reverse-phase chromatography study. Int. J. Mol. Sci. 18:2520. 10.3390/ijms18122520 29186808
Guo H., Miles-Barret D. M., Neal A. R., Zhang T., Li C., Westwood N. J., (2018). Unravelling the enigma of ligninOX: can the oxidation of lignin be controlled? Chem. Sci. 9 702–711. 10.1039/c7sc03520a 29629139
Hatzakis E., Dais P., (2008). Determination of water content in olive oil by 31P NMR spectroscopy. J. Agric. Food Chem. 56 1866–1872. 10.1021/jf073227n 18303819
Jeong H. J., Cha J.-Y., Choi J. H., Jang K.-S., Lim J., Kim W.-Y., et al. (2018). One-pot transformation of technical lignins into humic-like plant stimulants through fenton-based advanced oxidation: accelerating natural fungus-driven humification. ACS Omega 3 7441–7453. 10.1021/acsomega.8b00697 30087914
Khaleda L., Park H. J., Yun D. J., Jeon J. R., Kim M. G., Cha J. Y., et al. (2017). Humic acid confers HIGH-AFFINITY K+ TRANSPORTER 1-Mediated Salinity Stress Tolerance in Arabidopsis. Mol. Cells 40 966–975. 10.14348/molcells.2017.0229 29276942
Kuiters A. T., (1989). Effects of phenolic acids on germination and early growth of herbaceous woodland plants. J. Chem. Ecol. 15 467–479. 10.1007/BF01014693 24271791
Lourençao A., Neiva D. M., Gominho J., Curt M. D., Fernández J., Marques A. V., et al. (2015). Biomass production of four Cynara cardunculus clones and lignin composition analysis. Biomass Bioenergy 76 86–95. 10.1016/j.biombioe.2015.03.009
Meng X., Crestini C., Ben H., Hao N., Pu Y., Ragauskas A. J., et al. (2019). Determination of hydroxyl groups in biorefinery resources via quantitative 31P NMR spectroscopy. Nat. Protoc. 14 2627–2647. 10.1038/s41596-019-0191-1 31391578
Monda H., Cozzolino V., Savy D., Vinci G., Drosos M., Piccolo A., (2018). Molecular composition of the Humeome extracted from different green composts and their biostimulation on early growth of maize. Plant Soil 429 407–424. 10.1007/s11104-018-3642-5
Nardi S., Pizzeghello D., Gessa C., Ferrarese K., Trainotti L., Casadoro G., (2000). A low molecular weight humic fraction on nitrate uptake and protein synthesis in maize seedlings. Soil Biol. Biochem. 32 415–419. 10.1016/s0038-0717(99)00168-6
Nebbioso A., Mazzei P., Savy D., (2014). Reduced complexity of multidimensional and diffusion NMR spectra of soil humic fractions as simplified by Humeomics. Chem. Biol. Technol. Agric. 1:24.
Nebbioso A., Piccolo A., (2011). Basis of a Humeomics science: chemical fractionation and molecular characterization of humic biosuprastructures. Biomacromolecules 12 1187–1199. 10.1021/bm101488e 21361272
Piccolo A., Spaccini R., Savy D., Drosos M., Cozzolino V., (2019). “The soil Humeome: chemical structure, functions and technological perspectives,” in Sustainable Agrochemistry: A Compendium of Technologies, ed. Vaz S., Jr. (Heidelberg: Springer Nature), 183–222. 28214121
Pizzeghello D., Zanella A., Carletti P., Nardi S., (2006). Chemical and biological characterization of dissolved organic matter from silver ?r and beech forest soils. Chemosphere 65 190–200. 10.1016/j.chemosphere.2006.03.001 16620908
Ray S. D., (1986). GA, ABA, phenol interaction in the control of growth: phenolic compounds as effective modulators of GA-ABA interaction in radish seedlings. Biol. Plant 28 361–369. 10.1007/bf02902248
Reigosa M. J., Souto X. C., González L., (1999). Effect of phenolic compounds on the germination of six weeds species. Plant Growth Regul. 28 83–88.
Robert D., (1992). “Carbon-13 nuclear magnetic resonance,” in Methods in Lignin Chemistry, eds Lin S. Y., Dence C. W., (Berlin: Springer-Verlag), 250–273.
Roy K., Kar S., Das R. N., (2015). “QSAR/QSPR modeling: introduction,” in A Primer on QSAR/QSPR Modeling: Fundamental Concepts, eds Roy K., Kar S., Das R. N., (New York, NY: Springer-Verlag Inc), 2–6. 10.1080/17460441.2018.1542428 30372648
Savy D., Cozzolino V., Nebbioso A., Drosos M., Nuzzo A., Mazzei P., et al. (2016a). Humic-like bioactivity on emergence and early growth of maize (Zea mays L.) of water-soluble lignins isolated from biomass for energy. Plant Soil 402 221–233. 10.1007/s11104-015-2780-2
Savy D., Cozzolino V., Vinci G., Canellas L., Piccolo A., (2017a). Humic-like water-soluble lignins from giant reed (Arundo donax L.) display hormone-like activity on plant growth. J. Plant Growth Regul. 36 995–1001. 10.1007/s00344-017-9696-4
Savy D., Cozzolino V., Vinci G., Nebbioso A., Piccolo A., (2015a). Water-soluble lignins from different bioenergy crops stimulate the early development of maize (Zea mays, L.). Molecules 20 19958–19970. 10.3390/molecules201119671 26556330
Savy D., Drosos M., Mazzei P., Piccolo A., (2018). Replacing calcium with ammonium counterion in lignosulfonates from paper mills affects their molecular properties and bioactivity. Sci. Total Environ. 645 411–418. 10.1016/j.scitotenv.2018.07.153 30025241
Savy D., Mazzei P., Drosos M., Cozzolino V., Lama L., Piccolo A., (2017b). Molecular characterization of extracts from biorefinery wastes and evaluation of their plant biostimulation. ACS Sustain. Chem. Eng. 5 9023–9031. 10.1021/acssuschemeng.7b01928
Savy D., Mazzei P., Drosos M., Nebbioso A., Piccolo A., (2015b). Molecular composition of water-soluble lignins separated from different non-food biomasses. Fuel Process. Technol. 131 175–181. 10.1016/j.fuproc.2014.11.011
Savy D., Mazzei P., Nebbioso A., Drosos M., Nuzzo A., Cozzolino V., et al. (2016b). “Molecular properties and functions of humic substances and humic-like substances (HULIS) from biomass and their transformation products,” in Analytical Techniques and Methods for Biomass, ed. Vaz S., Jr. (Berlin: Springer-Verlag), 85–114. 10.1007/978-3-319-41414-0_4
Savy D., Mazzei P., Roque R., Nuzzo A., Bowra S., Santos R., (2015c). Structural recognition of lignin isolated from bioenergy crops by subcritical water: ethanol extraction. Fuel Process. Technol. 138 637–644. 10.1016/j.fuproc.2015.07.004
Savy D., Piccolo A., (2014). Physical–chemical characteristics of lignins separated from biomasses for second-generation ethanol. Biomass Bioenergy 62 58–67. 10.1016/j.biombioe.2014.01.016
Sleighter R., Caricasole P., Richards K. M., Hanson T., Hatcher P. G., (2015). Characterization of terrestrial dissolved organic matter fractionated by pH and polarity and their biological effects on plant growth. Chem. Biol. Technol. Agric. 2:9.
Spaccini R., Cozzolino V., Di Meo V., Savy D., Drosos M., Piccolo A., (2019). Bioactivity of humic substances and water extracts from compost made by ligno-cellulose wastes from biorefinery. Sci. Tot. Environ. 646, 792–800. 10.1016/j.scitotenv.2018.07.334 30064105
Spaccini R., Piccolo A., Conte P., Haberhauer G., Gerzabek M. H., (2002). Increased soil organic carbon sequestration through hydrophobic protection by humic substances. Soil Biol. Biochem. 34 1839–1851. 10.1016/s0038-0717(02)00197-9 10541661
Steinberg C. E. W., Haitzer M., Brüggemann R., Perminova I. V., Yashchenko N. Y., Petrosyan V. S., (2000). Towards a quantitative structure activity relationship (QSAR) of dissolved humic substances as detoxifying agents in freshwaters. Int. Rev. Hydrobiol. 85 253–266. 10.1002/(sici)1522-2632(200004)85:2/3<253::aid-iroh253>3.0.co;2-9
Sun R., Tomkinson J., Wang S., Zhu W., (2000). Characterization of lignins from wheat straw by alkaline peroxide treatment. Polym. Degrad. Stab. 67 101–109. 10.1016/s0141-3910(99)00099-3
Tudose I., (2002). Dynamics of Accumulation of Polyphenolic Compounds in Vitis vinifera and some Aspects of their Bioactive Properties. Ph.D. thesis, Gheorghe Asachi Technical University of Iasi, Iasi, 136–160.
Vilasboa J., Da Costa C. T., Fett-Neto A. G., (2019). Rooting of eucalypt cuttings as a problem-solving oriented model in plant biology. Prog. Biophys. Mol. Biol. 146 85–97. 10.1016/j.pbiomolbio.2018.12.007 30557533
Vinci G., Cozzolino V., Mazzei P., Monda H., Drosos M., Savy D., et al. (2018). Effects of Bacillus amyloliquefaciens and different phosphorus sources on Maize plants as revealed by NMR and GC-MS based metabolomics. Plant Soil 429 437–450. 10.1007/s11104-018-3701-y
Wells M. J. M., Stretz H. A., (2019). Supramolecular architectures of natural organic matter. Sci. Total Environ. 671 1125–1133. 10.1016/j.scitotenv.2019.03.406
Xiao X., Xi B.-D., He X.-S., Zhang H., Li Y.-H., Pu S.-P., et al. (2019). Redox properties and dechlorination capacities of landfill-derived humic-like acids. Environ. Pollut. 253 488–496. 10.1016/j.envpol.2019.07.044 31330341
Zandonadi D. B., Santos M. P., Busato J. G., Peres L. E. P., Façanha A. R., (2013). Plant physiology as affected by humified organic matter. Theor. Exp. Plant Physiol. 25 12–25.