Savy, Davide ; Université de Liège - ULiège > Département GxABT > Plant Sciences
Mercl, F.; Department of Agro Environmental Chemistry and Plant Nutrition, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, Suchdol, 165 00, Czech Republic
Cozzolino, V.; Interdepartmental Res. Ctr. of Nucl. Magnetic Reson. for the Environ., Agri-Food and New Materials, University of Naples Federico II, Via Università 100, Portici, 80055, Italy, Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, Portici, 80055, Italy
Spaccini, R.; Interdepartmental Res. Ctr. of Nucl. Magnetic Reson. for the Environ., Agri-Food and New Materials, University of Naples Federico II, Via Università 100, Portici, 80055, Italy, Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, Portici, 80055, Italy
Cangemi, S.; Interdepartmental Res. Ctr. of Nucl. Magnetic Reson. for the Environ., Agri-Food and New Materials, University of Naples Federico II, Via Università 100, Portici, 80055, Italy
Piccolo, A.; Interdepartmental Res. Ctr. of Nucl. Magnetic Reson. for the Environ., Agri-Food and New Materials, University of Naples Federico II, Via Università 100, Portici, 80055, Italy, Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, Portici, 80055, Italy
Language :
English
Title :
Soil Amendments with Lignocellulosic Residues of Biorefinery Processes Affect Soil Organic Matter Accumulation and Microbial Growth
Publication date :
2020
Journal title :
ACS Sustainable Chemistry and Engineering
eISSN :
2168-0485
Publisher :
American Chemical Society
Volume :
8
Issue :
8
Pages :
3381-3391
Peer reviewed :
Peer Reviewed verified by ORBi
Name of the research project :
PON03PE_00107_01
Funders :
MIUR - Ministero dell'Istruzione, dell'Università e della Ricerca
Savy, D.; Nebbioso, A.; Cóndor, R. D; Vitullo, M. The Kyoto Protocol and European and Italian Regulations in Agriculture. In Piccolo, A., Ed.; Carbon Sequestration in Agriultural Soils. A Multidisciplinary Approach to Innovative Methods; Springer-Verlag: Berlin, Heidelberg, Germany, 2012; pp 21-37.
Jayawardena, D. M.; Heckathorn, S. A.; Bista, D. R.; Mishra, S.; Boldt, J. K.; Krause, C. R. Elevated CO2 plus chronic warming reduce nitrogen uptake and levels or activities of nitrogen-uptake and-assimilatory proteins in tomato roots. Physiol. Plant. 2017, 159, 354-365, 10.1111/ppl.12532
Cherubini, F. The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energy Convers. Manage. 2010, 51, 1412-1421, 10.1016/j.enconman.2010.01.015
Vohra, M.; Manwar, J.; Manmode, R.; Padgilwar, S.; Patil, S. Bioethanol production: feedstock and current technologies. J. Environ. Chem. Eng. 2014, 2, 573-84, 10.1016/j.jece.2013.10.013
Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain Directives. https://eur-lex.europa.eu/eli/dir/2008/98/oj (accessed November 26, 2020).
Doherty, W. O. S.; Mousavioun, P.; Fellows, C. M. Value-adding to cellulosic ethanol: lignin polymers. Ind. Crops Prod. 2011, 33, 259-276, 10.1016/j.indcrop.2010.10.022
Angelini, S.; Barrio, A.; Cerruti, P.; Scarinzi, G.; Garcia-Jaca, J.; Savy, D.; Piccolo, A.; Malinconico, M. Lignosulfonates as Fire Retardants in Wood Flour-Based Particleboards. Int. J. Polym. Sci. 2019, 2019, 1, 10.1155/2019/6178163
Savy, D.; Cozzolino, V.; Vinci, G.; Nebbioso, A.; Piccolo, A. Water-Soluble Lignins from Different Bioenergy Crops Stimulate the Early Development of Maize (Zea mays, L.). Molecules 2015, 20, 19958-19970, 10.3390/molecules201119671
Savy, D.; Cozzolino, V.; Nebbioso, A.; Drosos, M.; Nuzzo, A.; Mazzei, P.; Piccolo, A. Humic-like bioactivity on emergence and early growth of maize (Zea mays L.) of water-soluble lignins isolated from biomass for energy. Plant Soil 2016, 402, 221-233, 10.1007/s11104-015-2780-2
Savy, D.; Cozzolino, V.; Vinci, G.; Canellas, L.; Piccolo, A. Humic-Like Water-Soluble Lignins from Giant Reed (Arundo donax L.) Display Hormone-Like Activity on Plant Growth. J. Plant Growth Regul. 2017, 36, 995-1001, 10.1007/s00344-017-9696-4
Savy, D.; Mazzei, P.; Drosos, M.; Cozzolino, V.; Lama, L.; Piccolo, A. Molecular characterization of extracts from biorefinery wastes and evaluation of their plant biostimulation. ACS Sustainable Chem. Eng. 2017, 5, 9023-9031, 10.1021/acssuschemeng.7b01928
Busby, R. R.; Torberth, H. A.; Gebhart, D. L. Carbon and nitrogen mineralization of non-composted and composted municipal solid waste in sandy soils. Soil Biol. Biochem. 2007, 39, 1277-1283, 10.1016/j.soilbio.2006.12.003
Spaccini, R.; Cozzolino, V.; Di Meo, V.; Savy, D.; Drosos, M.; Piccolo, A. Bioactivity of humic substances and water extracts from compost made by ligno-cellulose wastes from biorefinery. Sci. Total Environ. 2019, 646, 792-800, 10.1016/j.scitotenv.2018.07.334
Lal, R. Managing soils and ecosystems for mitigating anthropogenic carbon emissions and advancing global food security. BioScience 2010, 60, 708-721, 10.1525/bio.2010.60.9.8
Fontaine, S.; Barot, S.; Barre, P.; Bdioui, N.; Mary, B.; Rumpel, C. Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 2007, 450, 277-281, 10.1038/nature06275
Blagodatskaya, E.; Khomyakov, N.; Myachina, O.; Bogomolova, I.; Blagodatsky, S.; Kuzyakov, Y. Microbial interactions affect sources of priming induced by cellulose. Soil Biol. Biochem. 2014, 74, 39-49, 10.1016/j.soilbio.2014.02.017
Nottingham, A. T.; Griffiths, H.; Chamberlain, P. M.; Stott, A. W.; Tanner, E. V. J. Soil priming by sugar and leaf-litter substrates: a link to microbial groups. Appli. Soil Ecol. 2009, 42, 183-190, 10.1016/j.apsoil.2009.03.003
Cozzolino, V.; Di Meo, V.; Monda, H.; Spaccini, R.; Piccolo, A. The molecular characteristics of compost affect plant growth, arbuscular mycorrhizal fungi, and soil microbial community composition. Biol. Fertil. Soils 2016, 52, 15-29, 10.1007/s00374-015-1046-8
Spaccini, R.; Piccolo, A. Molecular characteristics of humic acids extracted from compost at increasing maturity stages. Soil Biol. Biochem. 2009, 41, 1164-1172, 10.1016/j.soilbio.2009.02.026
Piccolo, A.; Spaccini, R.; Drosos, M.; Vinci, G.; Cozzolino, V. The Molecular Composition of Humus Carbon: Recalcitrance and Reactivity in Soils. In The Future of Soil Carbon: Its Conservation and Formation; Garcia, C., Nannipieri, P., Hernandez, T., Eds.; Academic Press Elsevier: London, 2018; pp 87-124.
Grignani, C.; Alluvione, F.; Bertora, C.; Zavattaro, L.; Fagnano, M.; Fiorentino, N.; Quaglietta Chiarandà, F.; Amato, M.; Lupo, F.; Bochicchio, R. Field Plots and Crop Yields under Innovative Methods of Carbon Sequestration in Soil. In Carbon Sequestration in Agricultural Soils; Piccolo, A., Ed.; Springer-Verlag: Berlin, Heidelberg, Germany, 2012; pp 39-60.
Garbero, M.; Ottonello, P.; Cotti, C. M.; Ferrero, S.; Torre, P.; Cherchi, F.; Bonanni, A. Improved Biomass Pretreatment Process. WO Patent WO 2010113129 A3, 2010.
De Bari, I.; Liuzzi, F.; Villone, A.; Braccio, G. Hydrolysis of concentrated suspensions of steam pretreated Arundo donax. Appl. Energy 2013, 102, 179-189, 10.1016/j.apenergy.2012.05.051
Cimini, D.; Argenzio, O.; D'Ambrosio, S.; Lama, L.; Finore, I.; Finamore, R.; Pepe, O.; Faraco, V.; Schiraldi, C. Production of succinic acid from Basfia succiniciproducens up to the pilot scale from Arundo donax hydrolysate. Bioresour. Technol. 2016, 222, 355-360, 10.1016/j.biortech.2016.10.004
Blagodatskaya, E. V.; Anderson, T. H. Adaptive responses of soil microbial communities under experimental acid stress in controlled laboratory studies. Appl. Soil Ecol. 1999, 11, 207-216, 10.1016/S0929-1393(98)00148-6
Bligh, E. G.; Dyer, W. J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911-917, 10.1139/o59-099
Bardgett, R. D.; Hobbs, P.; Frostegard, A. Changes in soil fungal: bacterial biomass ratios following reductions in the intensity of management of an upland grassland. Biol. Fertil. Soils 1996, 22, 261-264, 10.1007/BF00382522
Frostegard, A.; Baath, E. The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol. Fertil. Soils 1996, 22, 59-65, 10.1007/BF00384433
Love, G. D.; Snape, C. E.; Jarvis, M. C. Comparison of leaf and stem cell-wall components in barley straw by solid-state 13C NMR. Phytochemistry 1998, 49, 1191-1194, 10.1016/S0031-9422(98)00103-4
Savy, D.; Cozzolino, V.; Drosos, M.; Mazzei, P.; Piccolo, A. Replacing calcium with ammonium counterion in Lignosulfonates from paper mills affects their molecular properties and bioactivity. Sci. Total Environ. 2018, 645, 411-418, 10.1016/j.scitotenv.2018.07.153
Kolodziejski, W.; Frye, J. S.; Maciel, G. E. Carbon-13 nuclear magnetic resonance spectrometry with cross polarization and magic-angle spinning for analysis of lodgepole pine wood. Anal. Chem. 1982, 54, 1419-1424, 10.1021/ac00245a035
Kono, H.; Yunoki, S.; Shikano, T.; Fujiwara, M.; Erata, T.; Takai, M. CP/MAS 13C NMR Study of Cellulose and Cellulose Derivatives. 1. Complete Assignment of the CP/MAS 13C NMR Spectrum of the Native Cellulose. J. Am. Chem. Soc. 2002, 124, 7506-7511, 10.1021/ja010704o
Gilardi, G.; Abis, L.; Cass, A. E. G. Carbon-13 CP/MAS solid-state NMR and FT-IR spectroscopy of wood cell wall biodegradation. Enzyme Microb. Technol. 1995, 17, 268-275, 10.1016/0141-0229(94)00019-N
Vane, C. H.; Abbott, G. D.; Head, I. M. The effect of fungal decay (Agaricus bisporus) on wheat straw lignin using pyrolysis-GC-MS in the presence of tetramethylammonium hydroxide (TMAH). J. Anal. Appl. Pyrolysis 2001, 60, 69-78, 10.1016/S0165-2370(00)00156-X
Monda, H.; Cozzolino, V.; Vinci, G.; Drosos, M.; Savy, D.; Piccolo, A. Molecular composition of the Humeome extracted from different green composts and their biostimulation on early growth of maize. Plant Soil 2018, 429, 407-424, 10.1007/s11104-018-3642-5
Savy, D.; Mazzei, P.; Drosos, M.; Nebbioso, A.; Piccolo, A. Molecular composition of water-soluble lignins separated from different non-food biomasses. Fuel Process. Technol. 2015, 131, 175-181, 10.1016/j.fuproc.2014.11.011
Filley, T. R.; Hatcher, P. G.; Shortle, W. C.; Praseuth, R. T. The application of 13C-labeled tetramethylammonium hydroxide (13C-TMAH) thermochemolysis to the study of fungal degradation of wood. Org. Geochem. 2000, 31, 181-198, 10.1016/S0146-6380(99)00159-X
del Río, J. C.; Hatcher, P. G. Analysis of aliphatic biopolymers using thermochemolysis with tetramethylammonium hydroxide (TMAH) and gas chromatography-mass spectrometry. Org. Geochem. 1998, 29, 1441-1451, 10.1016/S0146-6380(98)00070-9
Song, X. Y.; Spaccini, R.; Pan, G.; Piccolo, A. Stabilization by hydrophobic protection as a molecular mechanism for organic carbon sequestration in maize-amended rice paddy soils. Sci. Total Environ. 2013, 458-460, 319-330, 10.1016/j.scitotenv.2013.04.052
Amblès, A.; Jambu, P.; Parlanti, E.; Joffre, J.; Riffe, C. Incorporation of natural monoacids from plant residues into a hydromorphic forest podzol. Eur. J. Soil Sci. 1994, 45, 175-182, 10.1111/j.1365-2389.1994.tb00499.x
Dungait, J. A. J.; Stear, N. A.; van Dongen, B. E.; Bol, R.; Evershed, R. P. Off-line pyrolysis and compound-specific stable carbon isotope analysis of lignin moieties: a new method for determining the fate of lignin residues in soil, Rapid Commun. Rapid Commun. Mass Spectrom. 2008, 22, 1631-1639, 10.1002/rcm.3454
Khatami, S.; Deng, Y.; Tien, M.; Hatcher, P. G. Lignin Contribution to Aliphatic Constituents of Humic Acids through Fungal Degradation. J. Environ. Qual. 2019, 48, 1565, 10.2134/jeq2019.01.0034
Spaccini, R.; Song, X. Y.; Cozzolino, V.; Piccolo, A. Molecular evaluation of soil organic matter characteristics in three agricultural soils by improved off-line thermochemolysis: The effect of hydrofluoric acid demineralisation treatment. Anal. Chim. Acta 2013, 802, 46-55, 10.1016/j.aca.2013.09.031
Clifford, D. J.; Carson, D. M.; McKinney, D. E.; Bortiatynski, J. M.; Hatcher, P. G. A new rapid technique for the characterization of lignin in vascular plants: thermochemolysis with tetramethylammonium hydroxide (TMAH). Org. Geochem. 1995, 23, 169-175, 10.1016/0146-6380(94)00109-E
Blagodatskaya, E.; Khomyakov, N.; Myachina, O.; Bogomolova, I.; Blagodatsky, S.; Kuzyakov, Y. Microbial interactions affect sources of priming induced by cellulose. Soil Biol. Biochem. 2014, 74, 39-49, 10.1016/j.soilbio.2014.02.017
Fontaine, S.; Henault, C.; Aamor, A.; Bdioui; Bloor, J. M. G.; Maire, V.; Mary, B.; Revaillot, S.; Maron, P. A. Fungi mediate long term sequestration of carbon and nitrogen in soil through their priming effect. Soil Biol. Biochem. 2011, 43, 86-96, 10.1016/j.soilbio.2010.09.017
Feng, S.; Huang, Y.; Ge, Y.; Su, Y.; Xu, X.; Wang, Y.; He, X. Variations in the patterns of soil organic carbon mineralization and microbial communities in response to exogenous application of rice straw and carbonate. Sci. Total Environ. 2016, 571, 615-623, 10.1016/j.scitotenv.2016.07.029
Zhao, S.; Zhang, S. Linkages between straw decomposition rate and the change in microbial fractions and extracellular enzyme activities in soils under different long-term fertilization treatments. PLoS One 2018, 13, 1-15, 10.1371/journal.pone.0202660
Osono, T. Ecology of ligninolytic fungi associated with leaf litter decomposition. Ecol. Res. 2007, 22, 955-974, 10.1007/s11284-007-0390-z
de Boer, W.; Folman, L. B.; Summerbell, R. C.; Boddy, L. Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol. Rev. 2005, 29, 795-811, 10.1016/j.femsre.2004.11.005
Williams, S. T.; Robinson, C. S. The role of streptomycetes in decomposition of chitin in acidic soils. Microbiology 1981, 127, 55-63, 10.1099/00221287-127-1-55
Wang, H.; Liu, S.; Chang, S. X.; Wang, J.; Shi, Z.; Huang, X.; Wen, Y.; Lu, L.; Cai, D. Soil microbial community composition rather than litter quality is linked with soil organic carbon chemical composition in plantations in subtropical China. J. Soils Sediments 2015, 15, 1094-1103, 10.1007/s11368-015-1118-2
Tate, R. Soil Microbiology, second ed.; John Wiley and Sons: New York, 2000.
Esperschütz, J.; Buegger, F.; Winkler, J. B.; Munch, J. C.; Schloter, M.; Gattinger, A. Microbial response to exudates in the rhizosphere of young beech trees (Fagus sylvatica L.) after dormancy. Soil Biol. Biochem. 2009, 41, 1976-1985, 10.1016/j.soilbio.2009.07.002
de Menezes, A. B.; Richardson, A. E.; Thrall, P. H. Linking fungal-bacterial co-occurrences to soil ecosystem function. Curr. Opin. Microbiol. 2017, 37, 135-141, 10.1016/j.mib.2017.06.006
Kaiser, C.; Franklin, O.; Dieckmann, U.; Richter, A. Microbial community dynamics alleviate stoichiometric constraints during litter decay. Ecol Lett. 2014, 17, 680-690, 10.1111/ele.12269
Piccolo, A.; Mbagwu, J. S. C. Role of hydrophobic components of soil organic matter on the stability of soil aggregates. Soil Sci. Soc. Am. J. 1999, 63, 1801-1810, 10.2136/sssaj1999.6361801x
Masoom, H.; Courtier-Murias, D.; Farooq, H.; Soong, R.; Kelleher, B. P.; Zhang, C.; Maas, W. E.; Fey, M.; Kumar, R.; Monette, M.; Stronks, H. J.; Simpson, M. J.; Simpson, A. J. Soil Organic Matter in Its Native State: Unravelling the Most Complex Biomaterial on Earth. Environ. Sci. Technol. 2016, 50, 1670-1680, 10.1021/acs.est.5b03410
Drosos, M.; Piccolo, A. The molecular dynamics of soil humus as a function of tillage. Land Degrad. Develop. 2018, 29, 1792-1805, 10.1002/ldr.2989
Meidute, S.; Demoling, F.; Bååth, E. Antagonistic and synergistic effects of fungal and bacterial growth in soil after adding different carbon and nitrogen sources. Soil Biol. Biochem. 2008, 40, 2334-2343, 10.1016/j.soilbio.2008.05.011
Mille-Lindblom, C.; Fischer, H.; Tranvik, L. J. Antagonism between bacteria and fungi: substrate competition and a possible tradeoff between fungal growth and tolerance toward bacteria. Oikos 2006, 113, 233-242, 10.1111/j.2006.0030-1299.14337.x
Mille-Lindblom, C.; Tranvik, L. J. Antagonism between bacteria and fungi on decomposing aquatic plant litter. Microb. Ecol. 2003, 45, 173-182, 10.1007/s00248-002-2030-z
Romani, A. M.; Fischer, H.; Mille-Lindblom, C.; Tranvik, L. Interaction of bacteria and fungi on decomposing litter: differential extracellular enzyme activities. Ecology 2006, 87, 2559-2569, 10.1890/0012-9658(2006)87[2559:IOBAFO]2.0.CO;2
Köchy, M.; Hiederer, R.; Freibauer, A. Global distribution of soil organic carbon-Part 1: masses and frequency distributions of SOC stocks for the tropics, permafrost regions, wetlands, and the world. Soil 2015, 1, 351-365, 10.5194/soil-1-351-2015
Piccolo, A.; Spaccini, R.; Cozzolino, V.; Nuzzo, A.; Drosos, M.; Zavattaro, L.; Grignani, C.; Puglisi, E.; Trevisan, M. Effective carbon sequestration in Italian agricultural soils by in situ polymerization of soil organic matter under biomimetic photocatalysis. Land Degrad. Develop. 2018, 29, 485-494, 10.1002/ldr.2877
Zhang, Q.; Wu, J.; Yang, F.; Lei, Y.; Zhang, Q.; Cheng, X. Alterations in soil microbial community composition and biomass following agricultural land use change. Sci. Rep. 2016, 6, 36587, 10.1038/srep36587