[en] The ability to quickly spread a liquid across a surface and form a film is fundamental for a diverse range of technological processes, including printing, painting and spraying. Here we show that liquid dielectrophoresis or electrowetting can produce wetting on normally non-wetting surfaces, without needing modification of the surface topography or chemistry. Additionally, superspreading can be achieved without needing surfactants in the liquid. Here we use a modified Hoffman-de Gennes law to predict three distinct spreading regimes: exponential approach to an equilibrium shape, spreading to complete wetting obeying a Tanner's law-type relationship and superspreading towards a complete wetting film. We demonstrate quantitative experimental agreement with these predictions using dielectrophoresis-induced spreading of stripes of 1,2 propylene glycol. Our findings show how the rate of spreading of a partial wetting system can be controlled using uniform and non-uniform electric fields and how to induce more rapid superspreading using voltage control.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Hoffman, R. L. A study of the advancing interface. 1. Interface shape in liquidgas systems. J. Colloid Interf. Sci. 50, 228-241 (1975).
De Gennes, P. G. Wetting: statics and dynamics. Rev. Mod. Phys. 57, 827-863 (1985).
Tanner, L. H. The spreading of silicone oil drops on horizontal surfaces. J. Phys. D: Appl. Phys. 12, 1473-1484 (1979). (Pubitemid 10414577)
McHale, G., Newton, M. I., Rowan, S. M. & Banerjee, M. K. The spreading of small viscous stripes of oil. J. Phys. D: Appl. Phys. 28, 1925-1929 (1995).
McHale, G., Shirtcliffe, N. J., Aqil, S., Perry, C. C. & Newton, M. I. Topography driven spreading. Phys. Rev. Lett. 93, 036102-036105 (2004).
Berge, B. [Electrocapillarity and wetting of insulator films by water]. Comptes Rendus de l' Academie des Sciences Serie II 317, 157-163 (1993).
Mugele, F. & Baret, J. C. Electrowetting: from basics to applications. J. Phys.: Condens. Matt. 17, R705-R774 (2005). (Pubitemid 40970543)
Pollack, M. G., Fair, R. B. & Shenderov, A. D. Electrowetting-based actuation of liquid droplets for microfluidic applications. Appl. Phys. Lett. 77, 1725-1726 (2000).
Fair, R. B. Digital microfluidics: is a true lab-on-a-chip possible? Microfluid. Nanofluid. 3, 245-281 (2007). (Pubitemid 46681552)
Berge, B. & Peseux, J. Variable focal lens controlled by an external voltage: an application of electrowetting. Eur. Phys. J. E 3, 159-163 (2000).
Kuiper, S. & Hendriks, B. H. W. Variable-focus liquid lens for miniature cameras. Appl. Phys. Lett. 85, 1128-1130 (2004).
Hayes, R. A. & Feenstra, B. J. Video-speed electronic paper based on electrowetting. Nature 425, 383-385 (2003). (Pubitemid 37187263)
Klingner, A. & Mugele, F. Electrowetting-induced morphological transitions of fluid microstructures. J. Appl. Phys. 95, 2918-2920 (2004).
Baret, J. C., Decré, M. M. J., Herminghaus, S. & Seemann, R. Transport dynamics in open microfluidic grooves. Langmuir 23, 5200-5204 (2007). (Pubitemid 46732013)
Blake, T. D., Clarke, A. & Stattersfield, E. H. An investigation of electrostatic assist in dynamic wetting. Langmuir 16, 2928-2935 (2000). (Pubitemid 30576826)
McHale, G., Brown, C. V., Newton, M. I., Wells, G. G. & Sampara, N. Dielectrowetting driven spreading of droplets. Phys. Rev. Lett. 107, 186101-186104 (2011).
Hugh, C. & Scriven, L. E. Hydrodynamic model of steady movement of a solid/liquid/fluid contact line. J. Colloid. Interf. Sci 35, 85-101 (1971).
Voinov, O. V. Hydrodynamics of wetting. Fluid Dyn. 11, 714-721 (1976).
Cox, R. G. The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow. J. Fluid. Mech. 168, 169-194 (1986). (Pubitemid 16633313)
Ananthapadmanabhan, K. P., Goddard, E. D. & Chandar, P. A study of the solution, interfacial and wetting properties of silicone surfactants. Colloid. Surf. 44, 281-297 (1990). (Pubitemid 20670390)
Bonn, D., Eggers, J., Indekeu, J., Meunier, J. & Rolley, E. Wetting and spreading. Rev. Mod. Phys. 81, 739-805 (2009).
Zhu, S., Miller, W. G., Scriven, L. E. & Davis, H. T. Superspreading of watersilicone surfactant on hydrophobic surfaces. Colloid. Surf. A: Physicochem. Eng. Asp. 90, 63-78 (1994).
Hill, R. M. Superspreading. Curr. Opin. Colloid. Interf. Sci. 3, 247-254 (1998). (Pubitemid 28288883)
Nikolov, A. D., Wasan, D. T., Chengara, A., Koczo, K., Policello, G. A. & Kolossvary, I. Superspreading driven by Marangoni flow. Adv. Colloid. Interf. Sci. 96, 325-338 (2002). (Pubitemid 34154693)
Rafai, S., Sarker, D., Bergeron, V., Meunier, J. & Bonn, D. Superspreading: Aqueous surfactant drops spreading on hydrophobic surfaces. Langmuir 18, 10486-10488 (2002).
Matar, O. K. & Craster, R. V. Dynamics of surfactant-assisted spreading. Soft Matter 5, 3801-3809 (2009).
Venzmer, J. Superspreading-20 years of physicochemical research. Curr. Opin. Colloid. Interf. Sci. 16, 335-343 (2011).
Liu, F. & Shen, W. Forced wetting and dewetting of liquids on solid surfaces and their roles in offset printing. Colloid.Surf. A: Physicochem. Eng. Asp. 316, 62-69 (2008). (Pubitemid 351173702)
Blake, T. D. Forced wetting of a reactive surface. Adv. Colloid. Interf. Sci. 179, 22-28 (2012).
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.