[en] Coherent and anticoherent states of spin systems up to spin j=2 are known to be optimal in order to detect rotations by a known angle but unknown rotation axis. These optimal quantum rotosensors are characterized by minimal fidelity, given by the overlap of a state before and after a rotation, averaged over all directions in space. We calculate a closed-form expression for the average fidelity in terms of anticoherent measures, valid for arbitrary values of the quantum number j. We identify optimal rotosensors (i) for arbitrary rotation angles in the case of spin quantum numbers up to j=7/2 and (ii) for small rotation angles in the case of spin quantum numbers up to j=5. The closed-form expression we derive allows us to explain the central role of anticoherence measures in the problem of optimal detection of rotation angles for arbitrary values of j.
Research Center/Unit :
CESAM - Complex and Entangled Systems from Atoms to Materials - ULiège
Disciplines :
Physics
Author, co-author :
Martin, John ; Université de Liège - ULiège > Département de physique > Optique quantique
Weigert, Stefan; Department of Mathematics, University of York, UK-York YO10 5DD, United Kingdom
Giraud, Olivier; Université Paris-Saclay, CNRS, LPTMS, 91405 Orsay, France
Language :
English
Title :
Optimal Detection of Rotations about Unknown Axes by Coherent and Anticoherent States
Publication date :
16 June 2020
Journal title :
Quantum
eISSN :
2521-327X
Publisher :
Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften, Austria
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
W. Heisenberg, Über den anschaulichen In-halt der quantentheoretischen Kinematik und Mechanik, Z. Phys. 43, 172 (1927).
V. Giovannetti, S. Lloyd, L. Maccone, Advances in quantum metrology, Nature Photonics 5, 222 (2011).
P. Busch, P. Lahti, J.-P. Pellonpää, K. Ylinen: Quantum Measurement, Springer 2016.
W. Nawrocki, Introduction to Quantum Metrology, Springer Nature 2019.
A. Peres and P. F. Scudo, Transmission of a Cartesian Frame by a Quantum System, Phys. Rev. Lett. 87, 167901 (2001).
H. Hakoshima and Y. Matsuzaki, Efficient detection of inhomogeneous magnetic fields from the single spin with Dicke states, arXiv:2003.12524.
C. R. Rao, Information and the accuracy attainable in the estimation of statistical parameters, Bulletin of the Calcutta Mathematical Society 37, 81 (1945).
H. Cramér, Mathematical Methods of Statistics (PMS-9), Princeton University Press 1946.
C. W. Helstrom, Quantum Detection and Estimation Theory, volume 123 of Mathematics in Science and Engineering, Elsevier (1976).
M. Hübner, Explicit computation of the Bures distance for density matrices, Phys. Lett. A 163, 239 (1992).
M. Hübner, Computation of Uhlmann’s parallel transport for density matrices and the Bures metric on three-dimensional Hilbert space, Phys. Lett. A 179, 226 (1993).
P. Kolenderski and R. Demkowicz-Dobrzanski, Optimal state for keeping reference frames aligned and the Platonic solids, Phys. Rev. A 78, 052333 (2008).
A. Z. Goldberg and D. F. V. James, Quantum-limited Euler angle measurements using anticoherent states, Phys. Rev. A 98, 032113 (2018).
Y. Mo and G. Chiribella, Quantum-enhanced learning of rotations about an unknown direction, New J. Phys. 21, 113003 (2019).
C. Chryssomalakos and H. Hernández-Coronado, Optimal quantum rotosensors, Phys. Rev. A 95, 052125 (2017).
F. T. Arecchi, E. Courtens, R. Gilmore, and H. Thomas, Atomic Coherent States in Quantum Optics, Phys. Rev. A 6, 2211 (1972).
J. Zimba, “Anticoherent” Spin States via the Majorana Representation, Electr. J. Theor. Phys. 3, 143 (2006).
F. Bouchard, P. de la Hoz, G. Björk, R. W. Boyd, M. Grassl, Z. Hradil, E. Karimi, A. B. Klimov, G. Leuchs, J. Rehacek, and L. L. Sánchez-Soto, Quantum metrology at the limit with extremal Majorana constellations, Optica 4, 1429 (2017).
T. Chalopin, C. Bouazza, A. Evrard, V. Makhalov, D. Dreon, J. Dalibard, L. A. Sidorenkov, and S. Nascimbene, Quantum-enhanced sensing using non-classical spin states of a highly magnetic atom, Nature Communications 9, 4955 (2018).
D. Baguette and J. Martin, Anticoherence measures for pure spin states, Phys. Rev. A 96, 032304 (2017).
L. C. Biedenharn and J. D. Louck, Angular Momentum in Quantum Physics, Cambridge University Press 1984.
I. Bengtsson and K. Życzkowski, Geometry of Quantum States: An Introduction to Quantum Entanglement, 2nd ed. Cambridge University Press 2017.
B. Coecke, A Representation for a Spin-S Entity as a Compound System in R3 Consisting of 2S Individual Spin-1/2 Entities, Foundations of Physics 28, 1347 (1998).
O. Giraud, D. Braun, D. Baguette, T. Bastin, and J. Martin, Tensor representation of spin states, Phys. Rev. Lett. 114, 080401 (2015).
S. Weinberg, Feynman Rules for Any Spin, Phys. Rev. 133, B1318 (1964).
D. Baguette, T. Bastin, and J. Martin, Multiqubit symmetric states with maximally mixed one-qubit reductions, Phys. Rev. A 90, 032314 (2014).
O. Giraud, P. Braun, and D. Braun, Quantifying Quantumness and the Quest for Queens of Quantum, New J. Phys. 12, 063005 (2010).
G. Björk, A. B. Klimov, P. de la Hoz, M. Grassl, G. Leuchs, L. L. Sánchez-Soto, Extremal quantum states and their Majorana constellations, Phys. Rev. A 92, 031801(R) (2015).
G. Björk, M. Grassl, P. de la Hoz, G. Leuchs and L. L. Sánchez-Soto, Stars of the quantum Universe: extremal constellations on the Poincaré sphere, Phys. Scr. 90, 108008 (2015).
P. Delsarte, J. M. Goethals, J. J. Seidel, Spherical codes and designs, Geometriae Dedicata 6, 363 (1977).
R. H. Hardin and N. J. A. Sloane, McLaren’s Improved Snub Cube and Other New Spherical Designs in Three Dimensions, Discrete and Computational Geometry 15, 429 (1996).
R. E. Schwartz, The Five-Electron Case of Thomson’s Problem, Experimental Mathematics 22, 157 (2013).
D. Baguette, F. Damanet, O. Giraud, and J. Martin, Anticoherence of spin states with point-group symmetries, Phys. Rev. A 92, 052333 (2015).
See e.g. http://polarization.markus-grassl.de/,http://www.oq.ulg.ac.be and Refs. [20, 28].
J. S. Sidhu and P. Kok, A Geometric Perspective on Quantum Parameter Estimation, AVS Quantum Science 2, 014701 (2020).
D. A. Varshalovich, A. N. Moskalev, V. K. Khersonskii, Quantum Theory Of Angular Momentum, World Scientific (1988).
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.