Afzelia; Leguminosae (Detarioideae); High-throughput sequencing; Phylogenomics; Coalescent approaches; Biome shift; Molecular dating; Species trees
Abstract :
[en] The dating of diversification events, including transitions between biomes, is key to elucidate the processes that underlie the assembly and evolution of tropical biodiversity. Afzelia is a widespread genus of tropical trees, threatened by exploitation for its valuable timber, that presents an interesting system to investigate diversification events in Africa. Africa hosts diploid Afzelia species in the savannahs north and south of the Guineo-Congolian rainforest and autotetraploid species confined to the rainforest. Species delimitation and phylogenetic relationships among the diploid and tetraploid species remained unresolved in previous studies using small amounts of DNA sequence data. We used genotyping-by-sequencing in the five widespread Afzelia species in Africa, the savannah species A. africana and A. quanzensis and the rainforest species A. bipindensis, A. pachyloba, and A. bella. Maximum likelihood and coalescent approaches resolved all species as monophyletic and placed the savannah and rainforest taxa into two separate clades corresponding to contrasted ploidy levels. Our data are thus compatible with a single biome shift in Afzelia in Africa, although we were unable to conclude on its direction. SNAPP calibrated species trees show that the savannah diploids started to diversify early, at 12 (9.09–14.89) Ma, which contrasts with a recent and rapid diversification of the rainforest tetraploid clade, starting at 4.22 (3.12 – 5.36) Ma. This finding of older diversification in a tropical savannah clade vs. its sister rainforest clade is exceptional; it stands in opposition to the predominant observation of young ages for savannahs lineages in tropical regions during the relatively recent expansion of the savannah biome.
Ainouche M. L., Fortune P. M., Salmon A., Parisod C., Grandbastien M. A., Fukunaga K., et al. (2009). Hybridization, polyploidy and invasion: lessons from Spartina (Poaceae). Biol. Invasions 11:1159. 10.1007/s10530-008-9383-2
Anderson B. M., Thiele K. R., Krauss S. L., Barrett M. D., (2017). Genotyping-by-sequencing in a species complex of Australian hummock grasses (Triodia): methodological insights and phylogenetic resolution. PLoS One 12:e0171053. 10.1371/journal.pone.0171053 28135342
Andrews S., (2010). FastQC: A Quality Control Tool for High Throughput Sequence Data. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc (accessed March, 2017).
Anhuf D., Ledru M. P., Behling H., Da Cruz F. W., Jr. Cordeiro R. C., Van der Hammen T., et al. (2006). Paleo-environmental change in Amazonian and African rainforest during the LGM. Palaeogeogr. Palaeoclimatol. Palaeoecol. 239 510–527. 10.1016/j.palaeo.2006.01.017
Ariani A., Berny M., Teran J. C., Gepts P., (2016). Genome-wide identification of SNPs and copy number variation in common bean (Phaseolus vulgaris L.) using genotyping-by-sequencing (GBS). Mol. Breed. 36:87.
Arnold B., Bomblies K., Wakeley J., (2012). Extending coalescent theory to autotetraploids. Genetics 192 195–204. 10.1534/genetics.112.140582 22714411
Aubréville A., (1959). La flore forestière De La Côte d’Ivoire, Vol. I., 2 Edn. Nogent-sur-Marne: Centre Technique Forestier Tropical.
Aubréville A., (1968). Légumineuses – Césalpinioidées. Flore du Gabon. Muséum Natl. d’Histoire Nat. 15 111–118.
Bolger A. M., Lohse M., Usadel B., (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30 2114–2120. 10.1093/bioinformatics/btu170 24695404
Bouckaert R., Heled J., (2014). DensiTree 2: seeing trees through the forest. bioRxiv [Preprint]. 10.1101/012401
Bouckaert R., Heled J., Kühnert D., Vaughan T., Wu C.-H., Xie D., et al. (2014). BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 10:e1003537. 10.1371/journal.pcbi.1003537 24722319
Bruneau A., Mercure M., Lewis G. P., Herendeen P. S., (2008). Phylogenetic patterns and diversification in the caesalpinioid legumes. Botany 86 697–718. 10.1139/b08-058
Bryant D., Bouckaert R., Felsenstein J., Rosenberg N. A., RoyChoudhury A., (2012). Inferring species trees directly from biallelic genetic markers: bypassing gene trees in a full coalescent analysis. Mol. Biol. Evol. 29 1917–1932. 10.1093/molbev/mss086 22422763
Burnham R. J., Johnson K., (2004). South American palaeobotany and the origins of neotropical rainforests. Philos. T. Roy. Soc. B 359 1595–1610. 10.1098/rstb.2004.1531 15519975
Cerling T. E., Harris J. M., McFadden B. J., Leakey M. G., Quade J., Eisenmann V., et al. (1997). Global vegetation change through the Miocene/Pliocene boundary. Nature 389 153–158. 10.1038/38229
Chevalier A., (1940). Sur un arbre du Cameroun et du Gabon à bois utilisable (Afzelia pachyloba Harms). Bot. Appl. Agricult. Trop. 19 484–488. 10.3406/jatba.1939.6006
Crisp M. D., Arroyo M. T., Cook L. G., Gandolfo M. A., Jordan G. J., McGlone M. S., et al. (2009). Phylogenetic biome conservatism on a global scale. Nature 458 754–756. 10.1038/nature07764 19219025
Daïnou K., Blanc-Jolivet C., Degen B., Kimani P., Ndiade-Bourobou D., Donkpegan A. S. L., et al. (2016). Revealing hidden species diversity in sister species using SNPs and SSRs on a systematically collected sample – A case study in the African tree genus Milicia. BMC Evol. 16:259. 10.1186/s12862-016-0831-9 27903256
Danecek P., Auton A., Abecasis G., Albers C. A., Banks E., DePristo M. A., et al. (2011). The variant call format and VCFtools. Bioinformatics 27 2156–2158. 10.1093/bioinformatics/btr330 21653522
Depristo M. A., Banks E., Poplin R., Garimella K. V., Maguire J. R., Hartl C., et al. (2011). A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43 491–498.
Donkpegan A. S. L., (2017). Evolutionary History of Afzelia Smith (Leguminosae - Caesalpinioideae) Complex in Forest and Savannah Ecosystems of Tropical Africa. 175. PhD thesis, University of Liège – Gembloux Agro-Bio Tech, Belgium.
Donkpegan A. S. L., Doucet J.-L., Dainou K., Hardy O. J., (2015). Microsatellite development and flow cytometry in the african tree genus Afzelia (Fabaceae. Caesalpinioideae) reveal a polyploid complex. Appl. Plant Sci. 3:1400097. 10.3732/apps.1400097 25606356
Donkpegan A. S. L., Doucet J.-L., Migliore J., Duminil J., Daïnou K., Rosalia P., et al. (2017). Evolution in African tropical trees displaying ploidy-habitat association: the genus Afzelia (Leguminosae). Mol. Phyl. Evol. 107 270–281. 10.1016/j.ympev.2016.11.004 27825871
Donkpegan A. S. L., Hardy O. J., Lejeune P., Oumorou M., Dainou K., Doucet J.-L., (2014). Un complexe d’espèces d’Afzelia des forêts africaines d’intérêt économique et écologique (synthèse bibliographique). Biotechnol. Agron. Soc. Environ. 18 233–246.
Donkpegan A. S. L., Piñeiro R., Heuertz M., Duminil J., Daïnou K., Doucet J.-L., et al. (2020). Population genomics of the widespread African savannah trees Afzelia africana and Afzelia quanzensis reveals no significant past fragmentation of their distribution ranges. Am. J. Bot. 107 498–509. 10.1002/ajb2.1449 32200549
Donoghue M. J., Edwards E. J., (2014). Biome shifts and niche evolution in plants. Ann. Rev. Ecol. Evol. Syst. 45 547–572. 10.1146/annurev-ecolsys-120213-091905
Doyle J. J., Doyle J. L., (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19 11–15.
Drummond A. J., Rambaut A., (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7:214. 10.1186/1471-2148-7-214 17996036
Drummond A. J., Suchard M. A., Xie D., Rambaut A., (2012). Bayesian P hylogenetics with BEAUti and the BEAST 1.7 Research article. Soc. Mol. Biol. Evol. 29 1969–1973. 10.1093/molbev/mss075 22367748
Duminil J., Kenfack D., Viscosi V., Grumiau L., Hardy O. J., (2012). Testing species delimitation in sympatric species complexes: the case of an African tropical tree, Carapa spp.(Meliaceae). Mol. Phylogenet. Evol. 62 275–285. 10.1016/j.ympev.2011.09.020 22019936
Eaton D. A., Ree R. H., (2013). Inferring phylogeny and introgression using RADseq data: an example from flowering plants (Pedicularis: Orobanchaceae). Syst. Biol. 62 689–706. 10.1093/sysbio/syt032 23652346
Elshire R. J., Glaubitz J. C., Sun Q., Poland J. A., Kawamoto K., Buckler E. S., et al. (2011). A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6:e19379. 10.1371/journal.pone.0019379 21573248
Escudero M., Eaton D. A. R., Hahn M., Hipp A. L., (2014). Genotyp- ing-By-Sequencing as a tool to infer phylogeny and ancestral hybridization: a case study in Carex (Cyperaceae). Mol. Phylogenet. Evol. 79 359–367. 10.1016/j.ympev.2014.06.026 25010772
Esselstyn J. A., Evans B. J., Sedlock J. L., Anwarali Khan F. A., Heaney L. R., (2012). Single-locus species delimitation: a test of the mixed Yule–coalescent model, with an empirical application to Philippine round-leaf bats. Proc. R. Soc. B Biol. Sci. 279 3678–3686. 10.1098/rspb.2012.0705 22764163
Ezard T., Fujisawa T., Barraclough T., (2013). R package splits: SPecies’ LImits by Threshold Statistics, version 1.0-18/r45. Available online at: http://r-forge.r-project.org/projects/splits/ (accessed September, 2019).
Fernández-Mazuecos M., Mellers G., Vigalondo B., Sáez L., Vargas P., Glover B. J., (2018). Resolving recent plant radiations: power and robustness of genotyping-by-sequencing. Syst. Biol. 67 250–268. 10.1093/sysbio/syx062 28973686
Freitas C. G., Bacon C. D., Souza-Neto A. C., Collevatti R. G., (2019). Adjacency and area explain species bioregional shifts in neotropical palms. Front. Plant Sci. 10:55. 10.3389/fpls.2019.00055 30804955
Fujisawa T., Barraclough T. G., (2013). Delimiting species using single-locus data and the Generalized Mixed Yule Coalescent approach: a revised method and evaluation on simulated data sets. Syst. Biol. 62 707–724. 10.1093/sysbio/syt033 23681854
Heled J., Drummond A. J., (2015). Calibrated birth–death phylogenetic time-tree priors for bayesian inference. Syst. Biol. 64 369–383. 10.1093/sysbio/syu089 25398445
Heuertz M., Caron H., Scotti-Saintagne C., Pétronelli P., Engel J., Tysklind N., et al. (2020). The hyperdominant tropical tree Eschweilera coriacea (Lecythidaceae) shows higher genetic heterogeneity than sympatric Eschweilera species in French Guiana. Plant Ecol. Evol. 153 67–81. 10.5091/plecevo.2020.1565
Heuertz M., Duminil J., Dauby G., Savolainen V., Hardy O. J., (2014). Comparative phylogeography in rainforest trees from Lower Guinea. Africa. PLoS One 9:e84307. 10.1371/journal.pone.0084307 24416215
Hipp A. L., Eaton D. A. R., Cavender-Bares J., Fitzek E., Nipper R., Manos P. S., (2014). A framework phylogeny of the American oak clade based on sequenced RAD data. PLoS One 9:e93975. 10.1371/journal.pone.0093975 24705617
Holstein N., Renner S. S., (2011). A dated phylogeny and collection records reveal repeated biome shifts in the African genus Coccinia (Cucurbitaceae). BMC Evol. Biol. 11:28. 10.1186/1471-2148-11-28 21269492
Ikabanga D. U., Stévart T., Koffi G. K., Monthe F. K., Doubindou N. E. C., Dauby G., et al. (2017). Combining morphology and population genetic analysis uncover species delimitation in the widespread African tree genus Santiria (Burseraceae). Phytotaxa 321 166–180.
Institut National pour l’Etude Agronomique du Congo-belge [INEAC] (1952). Spermatophytes. Flore du Congo Belge et du Ruanda-Urundi. Bruxelles: INEAC, 579.
International Union for Conservation of Nature and Natural Resources [IUCN] (2012). IUCN Red List of Threatened Species. Available online at: www.iucnredlist.org (accessed January 08, 2012).
Jacobs B. F., (2004). Palaeobotanical studies from tropical Africa: relevance to the evolution of forest, woodland and savannah biomes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 359 1573–1583. 10.1098/rstb.2004.1533 15519973
Jacobs B. F., Pan A. D., Scotese C. R., (2010). A review of the Cenozoic vegetation history of Africa. Cenozoic Mammals of Africa. Berkeley: University of California Press, 57–72.
Kadiri A. B., Olowokudejo J. D., (2008). Comparative foliar epidermal morphology of the West African species of the genus Afzelia Smith (Leguminosae: Caesalpinioideae). Gayana Bot. 65 84–92.
Koffi K. G., Heuertz M., Doumenge C., Onana J. M., Gavory F., Hardy O. J., (2010). A combined analysis of morphological traits, chloroplast and nuclear DNA sequences within Santiria trimera (Burseraceae) suggests several species following the Biological Species Concept. Plant Ecol. Evol. 143 160–169. 10.5091/plecevo.2010.433
Leaché A. D., Banbury B. L., Felsenstein J., de Oca A. N. -M., Stamatakis A., (2015). Short tree, long tree, right tree, wrong tree: new acquisition bias corrections for inferring SNP phylogenies. Syst. Biol. 64 1032–1047. 10.1093/sysbio/syv053 26227865
Léonard J. J. G., (1950). Notes sur les genres paleotropicaux Afzelia, Intsia et Pahudia (Legum. Caesalp.). Reinwardtia 1 61–66.
Lewis P. O., (2001). A likelihood approach to estimating phylogeny from discrete morphological character data. Syst. Biol. 50 913–925. 10.1080/106351501753462876 12116640
Li H., Durbin R., (2009). Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25 1754–1760. 10.1093/bioinformatics/btp324 19451168
Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., et al. (2009). The sequence alignment/map format and SAMtools. Bioinformatics 25 2078–2079. 10.1093/bioinformatics/btp352 19505943
Lischer H. E. L., Excoffier L., (2012). PGDSpider: An automated data conversion tool for connecting population genetics and genomics programs. Bioinformatics 28 298–299. 10.1093/bioinformatics/btr642 22110245
Lissambou B-J., Hardy O. J., Atteke C., Stevart T., Dauby G., Mbatchi B., et al. (2018). Taxonomic revision of the African genus Greenwayodendron (Annonaceae). Phytokeys 114 55–93. 10.3897/phytokeys.114.27395 30627042
LPWG (2017). A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny. Taxon 66 44–77.
Maurin O., Davies T. J., Burrows J. E., Daru B. H., Yessoufou K., Muasya A.M., et al. (2014). Savanna fire and the origins of the ‘underground forests’ of Africa. New Phytol. 204 201–214. 10.1111/nph.12936 25039765
Miller M. A., (2009). The CIPRES Portals. CIPRES. Arch. By WebCite(r). Available online at: https://www.webcitation.org/5imQlJeQa (accessed December, 2019).
Miller C. S., Gosling W. D., (2014). Quaternary forest associations in lowland tropical West Africa. Quat. Sci. Rev. 84 7–25. 10.1016/j.quascirev.2013.10.027
Monthe F. K., Migliore J., Duminil J., Bouka G., Demenou B. B., Doumenge C., et al. (2019). Phylogenetic relationships in two African Cedreloideae tree genera (Meliaceae) reveal multiple rain/dry forest transitions. Perspect. Plant Ecol. Evol. Syst. 37 1–10. 10.1016/j.ppees.2019.01.002
Morley R. J., (2000). Origin and Evolution of Tropical Rain Forests. New York, NY: John Wiley & Sons.
Nicotra A. B., Chong C., Bragg J. G., Ong C. R., Aitken N. C., Chuah A., et al. (2016). Population and phylogenomic decomposition via genotyping-by-sequencing in Australian Pelargonium. Mol. Ecol. 25 2000–2014. 10.1111/mec.13584 26864117
Pan A. D., Jacobs B. F., Herendeen P. S., (2010). Detarieae sensu lato (Fabaceae) from the Late Oligocene (27.23 Ma) Guang River flora of north-western Ethiopia. Bot. J. Linn. Soc. 163 44–54. 10.1111/j.1095-8339.2010.01044.x
Paradis E., Claude J., Strimmer K., (2004). APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20 289–290. 10.1093/bioinformatics/btg412 14734327
Pennington R. T., Hughes C. E., (2014). The remarkable congruence of New and Old World savannah origins. New Phytol. 204 4–6. 10.1111/nph.12996 25154641
Pennington R. T., Lavin M., (2016). The contrasting nature of woody plant species in different neotropical forest biomes reflects differences in ecological stability. New Phytol. 210 25–37. 10.1111/nph.13724 26558891
Pickrell J. K., Pritchard J. K., (2012). Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet. e1002967. 10.1371/journal.pgen.1002967 23166502
Pinheiro F., De Barros F., Palma-Silva C., Meyer D., Fay M. F., Suzuki R. M., et al. (2010). Hybridization and introgression across different ploidy levels in the Neotropical orchids Epidendrum fulgens and E. puniceoluteum (Orchidaceae). Mol. Ecol. 19 3981–3994. 10.1111/j.1365-294x.2010.04780.x 20807337
Plana V., (2004). Mechanisms and tempo of evolution in the African Guineo-Congolian rainforest. Philos. Trans. R. Soc. B Biol. Sci. 359 1585–1594. 10.1098/rstb.2004.1535 15519974
Pons J., Barraclough T. G., Gomez-Zurita J., Cardoso A., Duran D. P., Hazell S., et al. (2006). Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Syst. Biol. 55 595–609. 10.1080/10635150600852011 16967577
R Core Team (2017). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. Available online at: http://www.R-project.org/
Rambaut A., (2007). FigTree, a Graphical Viewer of Phylogenetic Trees. Available online at: http://tree.bio.ed.ac.uk/software/Figtree/ (accessed March, 2020).
Rambaut A., Drummond A. J., (2016). Tracer v 1.6. Scotland: University of Edinburg, 2007.
Rognes T., Flouri T., Nichols B., Quince C., Mahé F., (2016). VSEARCH: a versatile open source tool for metagenomics. PeerJ 4:e2584. 10.7717/peerj.2584 27781170
Sack L., Scoffoni C., (2013). Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future. New Phytol. 198 983–1000. 10.1111/nph.12253 23600478
Salzmann U., Hoelzmann P., (2005). The Dahomey Gap: an abrupt climatically induced rain forest fragmentation in West Africa during the late Holocene. Holocene 15 190–199. 10.1191/0959683605hl799rp
Sarnthein M., Fenner J., (1988). Global wind-induced change of deep-sea sediment budgets, new ocean production and CO2 reservoirs ca. 3.3–2.35 Ma BP. Philos. Trans. R. Soc. London, Ser. A 318 487–504. 10.1098/rstb.1988.0020
Satabié B., (1994). Biosystématique et Vicariance dans la flore Camerounaise. Bull. Jard. Bot. Nat. Belg. 63 125–170.
Senut B., Pickford M., Ségalen L., (2009). Neogene desertification of Africa. Comptes Rendus. Geosci. 341 591–602. 10.1016/j.crte.2009.03.008
Simon M. F., Grether R., de Queiroz L. P., Skema C., Pennington R. T., Hughes C. E., (2009). Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptations to fire. Proc. Natl. Acad. Sci. U.S.A. 106 20359–20364. 10.1073/pnas.0903410106 19918050
Simon M. F., Pennington R. T., (2012). The evolution of adaptations of woody plants in the savannas of the Brazilian cerrado. Int. J. Plant Sci. 173 711–723.
Soltis D. E., Soltis P. S., Schemske D. W., Hancock J. F., Thompson J. N., Husband B. C., et al. (2007). Autopolyploidy in angiosperms: have we grossly underestimated the number of species? Taxon 56 13–30.
Stamatakis A., (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30 1312–1313. 10.1093/bioinformatics/btu033 24451623
Stange M., Sanchez-Villagra M. R., Salzburger W., Matschiner M., (2018). Bayesian divergence-time estimation with genome-wide single-nucleotide polymorphism data of sea catfishes (Ariidae) supports Miocene closure of the Panamanian Isthmus. Syst. Biol. 6 681–699. 10.1093/sysbio/syy006 29385552
Tng D. Y. P., Jordan G. J., Bowman D. M. J. S., (2013). Plant traits demonstrate that temperate and tropical giant eucalypt forests are ecologically convergent with rainforest not savanna. PLoS One 8:e0084378. 10.1371/journal.pone.0084378 24358359
Tosso F., Hardy O. J., Doucet J. L., Daïnou K., Kaymak E., Migliore J., (2018). Evolution in the Amphi- Atlantic tropical genus Guibourtia (Fabaceae, Detarioideae), combining NGS phylogeny and morphology. Mol. Phylogenet. Evol. 120 83–93. 10.1016/j.ympev.2017.11.026 29222064
Veranso-Libalah M. C., Kadereit G., Stone R. D., Couvreur T. L. P., (2018). Multiple shifts to open habitats in Melastomateae (Melastomataceae) congruent with the increase of African Neogene climatic aridity. J. Biogeogr. 45 1420–1431. 10.1111/jbi.13210
Wiens J. J., Donoghue M. J., (2004). Historical biogeography, ecology, and species richness. Trends Ecol. Evol. 19 639–644. 10.1016/j.tree.2004.09.011 16701326
Wood T. E., Takebayashi N., Barker M. S., Mayrose I., Greenspoon P. B., Rieseberg L. H., (2007). The frequency of polyploid speciation in vascular plants. Proc. Natl. Acad. Sci. U.S.A. 106 13875–13879. 10.1073/pnas.0811575106 19667210
Zachos J. C., Dickens G. R., Zeebe R. E., (2008). An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451 279–283. 10.1038/nature06588 18202643
Zhang J., Kapli P., Pavlidis P., Stamatakis A., (2013). A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29 2869–2876. 10.1093/bioinformatics/btt499 23990417
Yule G. U., (1925). A mathematical theory of evolution, based on the conclusions of Dr. J. C. Willis. F.R.S. Philos. Trans. R. Soc. B Biol. Sci. 213 21–87. 10.1098/rstb.1925.0002