Hadley cell; Mars; Martian atmosphere; dust storm; water vapor
Abstract :
[en] It has been suggested that dust storms efficiently transport water vapor from the near-surface to the middle atmosphere on Mars. Knowledge of the water vapor vertical profile during dust storms is important to understand water escape. During Martian Year 34, two dust storms occurred on Mars: a global dust storm (June to mid-September 2018) and a regional storm (January 2019). Here we present water vapor vertical profiles in the periods of the two dust storms (Ls = 162–260° and Ls = 298–345°) from the solar occultation measurements by Nadir and Occultation for Mars Discovery (NOMAD) onboard ExoMars Trace Gas Orbiter (TGO). We show a significant increase of water vapor abundance in the middle atmosphere (40–100 km) during the global dust storm. The water enhancement rapidly occurs following the onset of the storm (Ls~190°) and has a peak at the most active period (Ls~200°). Water vapor reaches very high altitudes (up to 100 km) with a volume mixing ratio of ~50 ppm. The water vapor abundance in the middle atmosphere shows high values consistently at 60°S-60°N at the growth phase of the dust storm (Ls = 195°–220°), and peaks at latitudes greater than 60°S at the decay phase (Ls = 220°–260°). This is explained by the seasonal change of meridional circulation: from equinoctial Hadley circulation (two cells) to the solstitial one (a single pole-to-pole cell). We also find a conspicuous increase of water vapor density in the middle atmosphere at the period of the regional dust storm (Ls = 322–327°), in particular at latitudes greater than 60°S.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Aoki, Shohei ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Vandaele, A. C.; Royal Belgian Institute for Space Aeronomy, BIRA-IASB, Brussels, Belgium
Daerden, F.; Royal Belgian Institute for Space Aeronomy, BIRA-IASB, Brussels, Belgium
Villanueva, G. L.; NASA Goddard Space Flight Center, Greenbelt, MD, United States
Liuzzi, G.; NASA Goddard Space Flight Center, Greenbelt, MD, United States
Thomas, I. R.; Royal Belgian Institute for Space Aeronomy, BIRA-IASB, Brussels, Belgium
Erwin, J. T.; Royal Belgian Institute for Space Aeronomy, BIRA-IASB, Brussels, Belgium
Trompet, L.; Royal Belgian Institute for Space Aeronomy, BIRA-IASB, Brussels, Belgium
Robert, S.; Royal Belgian Institute for Space Aeronomy, BIRA-IASB, Brussels, Belgium
Neary, L.; Royal Belgian Institute for Space Aeronomy, BIRA-IASB, Brussels, Belgium
Viscardy, S.; Royal Belgian Institute for Space Aeronomy, BIRA-IASB, Brussels, Belgium
Clancy, R. T.; Space Science Institute, Boulder, CO, United States
Smith, M. D.; NASA Goddard Space Flight Center, Greenbelt, MD, United States
Lopez-Valverde, M. A.; Instituto de Astrofisica de Andalucia, IAA-CSIC, Glorieta de la Astronomia, Granada, Spain
Hill, B.; Instituto de Astrofisica de Andalucia, IAA-CSIC, Glorieta de la Astronomia, Granada, Spain
Ristic, B.; Royal Belgian Institute for Space Aeronomy, BIRA-IASB, Brussels, Belgium
Patel, M. R.; Department of Physical Sciences, The Open University, Milton Keynes, United Kingdom
Bellucci, G.; Istituto di Astrofisica e Planetologia Spaziali, IAPS-INAF, Rome, Italy
Lopez-Moreno, J.-J.; Instituto de Astrofisica de Andalucia, IAA-CSIC, Glorieta de la Astronomia, Granada, Spain
Water Vapor Vertical Profiles on Mars in Dust Storms Observed by TGO/NOMAD
Publication date :
2019
Journal title :
Journal of Geophysical Research. Planets
ISSN :
2169-9097
eISSN :
2169-9100
Publisher :
Wiley, United States
Volume :
124
Issue :
12
Pages :
3482-3497
Peer reviewed :
Peer reviewed
Funders :
NASA - National Aeronautics and Space Administration F.R.S.-FNRS - Fonds de la Recherche Scientifique ASI - Agenzia Spaziale Italiana MICINN - Ministerio de Ciencia e Innovacion INCT-A - Instituto Nacional de Ciência e Tecnologia de Astrofísica OU - Open University BELSPO - Politique scientifique fédérale UK Space Agency CSA - Canadian Space Agency
Aoki, S., Vandaele, A. C., & Daerden, F., (2019) Vertical profiles of water vapor in the Martian atmosphere during dust storms in 2018–2019 observed by TGO/NOMAD, presented in Aoki et al., JGR. Royal Belgian Institute for Space Aeronomy. https://doi.org/10.18758/71021054
Chaffin, M. S., Chaufray, J.-Y., Stewart, I., Montmessin, F., Schneider, N. M., & Bertaux, J.-L. (2014). Unexpected variability of Martian hydrogen escape. Geophysical Research Letters, 41, 314–320. https://doi.org/10.1002/2013GL058578
Chaffin, M. S., Deighan, J., Schneider, N. M., & Stewart, A. I. F. (2017). Elevated atmospheric escape of atomic hydrogen from Mars induced by high-altitude water. Nature Geoscience, 10(3), 174–178. https://doi.org/10.1038/ngeo2887
Chaffin, M. S., D. M. Kass, S. Aoki, A. A. Fedorova, J. Deighan, J.-Y. Chaufray, K. Connour, N. G. Heavens, A. Kleinböhl, S. K. Jain, M. Mayyasi, J. T. Clarke, N. M. Schneider, B. Jakosky, G. Villanueva, G. Liuzzi, F. Daerden, I. R. Thomas, J.-J. Lopez-Moreno, M. R. Patel, G. Bellucci, A.C. Vandaele, A. Trokhimovskiy, F. Montmessin, and O. I. Korablev (2019), Mars climate controls atmospheric escape: Dust-driven escape from surface to space with MRO/MCS, TGO/NOMAD, TGO/ACS, and MAVEN/IUVS, The Ninth International Conference on Mars abstract #6312.
Clancy, T., Smith, M. D., Lefèvre, F., McConnochie, T. H., Sandor, B. J., Wolff, M. J., Lee, S. W., Murchie, S. L., Toigo, A. D., Nair, H., & Navarro, T. (2017). Vertical profiles of Mars 1.27 μm O2 dayglow from MRO CRISM limb spectra: Seasonal/global behaviors, comparisons to LMDGCM simulations, and a global definition for Mars water vapor profiles. Icarus, 293, 132–156. https://doi.org/10.1016/j.icarus.2017.04.011
Clarke, J. T. (2018). Dust-enhanced water escape. Nature Astrononomy, 2(2), 114–115. https://doi.org/10.1038/s41550-018-0383-6
Clarke, J. T., Bertaux, J.-L., Chaufray, J.-Y., Gladstone, G. R., Quemerais, E., Wilson, J. K., & Bhattacharyya, D. (2014). A rapid decrease of the hydrogen corona of Mars: The Martian Hydrogen Corona. Geophysical Research Letters, 41, 8013–8020. https://doi.org/10.1002/2014GL061803
Daerden, F., Neary, L., Viscardy, S., García Muñoz, A., Clancy, R. T., Smith, M. D., Encrenaz, T., & Fedorova, A. (2019). Mars atmospheric chemistry simulations with the GEM-Mars general circulation model. Icarus, 326, 197–224. https://doi.org/10.1016/j.icarus.2019.02.030
Daerden, F., Whiteway, J. A., Neary, L., Komguem, L., Lemmon, M. T., Heavens, N. G., Cantor, B. A., Hébrard, E., & Smith, M. D. (2015). A solar escalator on Mars: Self-lifting of dust layers by radiative heating. Geophysical Research Letters, 42, 7319–7326. https://doi.org/10.1002/2015GL064892
Fedorova, A., Bertaux, J.-L., Betsis, D., Montmessin, F., Korablev, O., Maltagliati, L., & Clarke, J. (2018). Water vapor in the middle atmosphere of Mars during the 2007 global dust storm. Icarus, 300, 440–457. https://doi.org/10.1016/j.icarus.2017.09.025
Forget, F., Hourdin, F., Fournier, R., Hourdin, C., Talagrand, O., Collins, M., Lewis, S. R., Read, P. L., & Huot, J. (1999). Improved general circulation models of the Martian atmosphere from the surface to above 80 km. Journal of Geophysical Research, 104(E10), 24,155–24,175. https://doi.org/10.1029/1999JE001025
Gamache, R. R., Farese, M., & Renaud, C. L. (2016). A spectral line list for water isotopologues in the 1100–4100 cm−1 region for application to CO2-rich planetary atmospheres. Journal of Molecular Spectroscopy, 326, 144–150. https://doi.org/10.1016/j.jms.2015.09.001
Gordon, I. E., Rothman, L. S., Hill, C., Kochanov, R. V., Tan, Y., Bernath, P. F., Birk, M., Boudon, V., Campargue, A., Chance, K. V., Drouin, B. J., Flaud, J.-M., Gamache, R. R., Hodges, J. T., Jacquemart, D., Perevalov, V. I., Perrin, A., Shine, K. P., Smith, M.-A. H., Tennyson, J., Toon, G. C., Tran, H., Tyuterev, V. G., Barbe, A., Császár, A. G., Devi, V. M., Furtenbacher, T., Harrison, J. J., Hartmann, J.-M., Jolly, A., Johnson, T. J., Karman, T., Kleiner, I., Kyuberis, A. A., Loos, J., Lyulin, O. M., Massie, S. T., Mikhailenko, S. N., Moazzen-Ahmadi, N., Müller, H. S. P., Naumenko, O. V., Nikitin, A. V., Polyansky, O. L., Rey, M., Rotger, M., Sharpe, S. W., Sung, K., Starikova, E., Tashkun, S. A., Vander Auwera, J., Wagner, G., Wilzewski, J., Wcisło, P., Yu, S., & Zak, E. J. (2017). The HITRAN2016 Molecular Spectroscopic Database. Journal of Quantitative Spectroscopy and Radiative Transfer, 203, 3–69. https://doi.org/10.1016/j.jqsrt.2017.06.038
Guzewich, S. D., Lemmon, M., Smith, C. L., Martínez, G., de Vicente-Retortillo, Á., Newman, C. E., Baker, M., Campbell, C., Cooper, B., Gómez-Elvira, J., Harri, A.-M., Hassler, D., Martin-Torres, F. J., McConnochie, T., Moores, J. E., Kahanpää, H., Khayat, A., Richardson, M. I., Smith, M. D., Sullivan, R., de la Torre Juarez, M., Vasavada, A. R., Viúdez-Moreiras, D., Zeitlin, C., & Mier, M.-P. Z. (2019). Mars Science Laboratory Observations of the 2018/Mars Year 34 Global Dust Storm. Geophysical Research Letters, 46, 71–79. https://doi.org/10.1029/2018GL080839
Heavens, N., Kleinböhl, A., Chaffin, M. S., Halekas, J. S., Kass, D. M., Hayne, P. O., McCleese, D. J., Piqueux, S., Shirley, J. H., & Schofield, J. T. (2018). Hydrogen escape from Mars enhanced by deep convection in dust storms. Nature Astrononomy, 2(2), 126–132. https://doi.org/10.1038/s41550-017-0353-4
Kass, D. M., Kleinboehl, A., McCleese, D. J., Schofield, J. T., & Smith, M. D. (2016). Interannual similarity in the Martian atmosphere during the dust storm season. Geophysical Research Letters, 43, 6111–6118. https://doi.org/10.1002/2016GL068978
Korablev, O., Montmessin, F., Trokhimovskiy, A., Fedorova, A. A., Shakun, A. V., Grigoriev, A. V., Moshkin, B. E., Ignatiev, N. I., Forget, F., Lefèvre, F., Anufreychik, K., Dzuban, I., Ivanov, Y. S., Kalinnikov, Y. K., Kozlova, T. O., Kungurov, A., Makarov, V., Martynovich, F., Maslov, I., Merzlyakov, D., Moiseev, P. P., Nikolskiy, Y., Patrakeev, A., Patsaev, D., Santos-Skripko, A., Sazonov, O., Semena, N., Semenov, A., Shashkin, V., Sidorov, A., Stepanov, A. V., Stupin, I., Timonin, D., Titov, A. Y., Viktorov, A., Zharkov, A., Altieri, F., Arnold, G., Belyaev, D. A., Bertaux, J.-L., Betsis, D. S., Duxbury, N., Encrenaz, T., Fouchet, T., Gérard, J.-C., Grassi, D., Guerlet, S., Hartogh, P., Kasaba, Y., Khatuntsev, I., Krasnopolsky, V. A., Kuzmin, R. O., Lellouch, E., Lopez-Valverde, M. A., Luginin, M., Määttänen, A., Marcq, E., Torres, J. M., Medvedev, A. S., Millour, E., Olsen, K. S., Patel, M. R., Quantin-Nataf, C., Rodin, A. V., Shematovich, V. I., Thomas, I., Thomas, N., Vazquez, L., Vincendon, M., Wilquet, V., Wilson, C. F., Zasova, L. V., Zelenyi, L. M., & Zorzano, M. P. (2018). The Atmospheric Chemistry Suite (ACS) of three spectrometers for the ExoMars 2016 Trace Gas Orbiter. Space Science Reviews, 214(1). https://doi.org/10.1007/s11214-017-0437-6
Lemoine, F. G., Smith, D. E., Rowlands, D. D., Zuber, M. T., Neumann, G. A., Chinn, D. S., & Pavlis, D. E. (2001). An improved solution of the gravity field of Mars (GMM-2B) from Mars Global Surveyor. Journal of Geophysical Research, 106(E10), 23,359–23,376. https://doi.org/10.1029/2000JE001426
Liuzzi, G., Villanueva, G. L., Mumma, M. J., Smith, M. D., Daerden, F., Ristic, B., Thomas, I., Vandaele, A. C., Patel, M., Lopez-Moreno, J.-J., Bellucci, G., & the NOMAD Team (2019). Methane on Mars: New insights into the sensitivity of CH4 with the NOMAD/ExoMars spectrometer through its first in-flight calibration. Icarus, 321, 671–690. https://doi.org/10.1016/j.icarus.2018.09.021
Maltagliati, L., Montmessin, F., Fedorova, A., Korablev, O., Forget, F., & Bertaux, J.-L. (2011). Evidence of water vapor in excess of saturation in the atmosphere of Mars. Science, 333(6051), 1868. https://doi.org/10.1126/science.1207957
Maltagliati, L., Montmessin, F., Korablev, O., Fedorova, A., Forget, F., Määttänen, A., Lefèvre, F., & Bertaux, J.-L. (2013). Annual survey of water vapor vertical distribution and water-aerosol coupling in the Martian atmosphere observed by SPICAM/MEx solar occultations. Icarus, 223(2), 942–962. https://doi.org/10.1016/j.icarus.2012.12.012
Neary, L., & Daerden, F. (2018). The GEM-Mars general circulation model for Mars: Description and evaluation. Icarus, 300, 458–476. https://doi.org/10.1016/j.icarus.2017.09.028
Neary, L., Daerden, F., Daerden, F., Aoki, S., Whiteway, J., Clancy, R. T., Smith, M., Viscardy, S., Erwin, J. T., Thomas, I. R., Villanueva, G., Liuzzi, G., Crismani, M., Wolff, M., Lewis, S. R., Holmes, J. A., Patel, M. R., Giuranna, M., Depiesse, C., Piccialli, A., Robert, S., Trompet, L., Willame, Y., Ristic, B., & Vandaele, A. C. (2019). Explanation for the increase in high altitude water on Mars observed by NOMAD during the 2018 global dust storm. Geophysical Research Letters, 46. https://doi.org/10.1029/2019GL084354
Neefs, E., Vandaele, A. C., Drummond, R., Thomas, I., Berkenbosch, S., Clairquin, R., Delanoye, S., Ristic, B., Maes, J., Bonnewijn, S., Pieck, G., Equeter, E., Depiesse, C., Daerden, F., Van Ransbeeck, E., Nevejans, D., Rodriguez, J., Lopez-Moreno, J.-J., Sanz, R., Morales, R., Candini, G. P., Pastor, C., Aparicio del Moral, B., Jeronimo, J. M., Gomez, J., Perez, I., Navarro, F., Cubas, J., Alonso, G., Gomez, A., Thibert, T., Patel, M. R., Belucci, G., De Vos, L., Lesschaeve, S., Van Vooren, N., Moelans, W., Aballea, L., Glorieux, S., Baeke, A., Kendall, D., De Neef, J., Soenen, A., Puech, P. Y., Ward, J., Jamoye, J. F., Diez, D., Vicario, A., & Jankowski, M. (2015). NOMAD spectrometer on the ExoMars trace gas orbiter mission: Part 1—Design, manufacturing and testing of the infrared channels. Applied Optics, 54(28), 8494–8520. https://doi.org/10.1364/AO.54.008494
Nevejans, D., Neefs, E., Van Ransbeeck, E., Berkenbosch, S., Clairquin, R., De Vos, L., Moelans, W., Glorieux, S., Baeke, A., Korablev, O., Vinogradov, I., Kalinnikov, Y., Bach, B., Dubois, J.-P., & Villard, E. (2006). Compact high-resolution spaceborne echelle grating spectrometer with acousto-optical tunable filter based order sorting for the infrared domain from 2.2 to 4.3 μm. Applied Optics, 45(21), 5191–5206. https://doi.org/10.1364/AO.45.005191
Rodgers, C. D. (2000). In C. D. Rodgers (Ed.), Inverse methods for atmospheric sounding—Theory and practice, inverse methods for atmospheric sounding—Theory and practice, Series: Series on Atmospheric Oceanic and Planetary Physics, ISBN: 9789812813718, (Vol. 2). Singapore: World Scientific Publishing Co. Pte. Ltd., Edited by. https://doi.org/10.1142/9789812813718
Shaposhnikov, D. S., Medvedev, A. S., Rodin, A. V., & Hartogh, P. (2019). Seasonal water “pump” in the atmosphere of Mars: Vertical transport to the thermosphere. Geophysical Research Letters, 46, 4161–4169. https://doi.org/10.1029/2019GL082839
Smith, M. D.Daerden, F.Neary, L.Khayat, S. (2018).The climatology of carbon monoxide and water vapor on Mars as observed by CRISM and modeled by the GEM-Mars general circulation model.Icarus, 301, 117–131. https://doi.org/10.1016/j.icarus.2017.09.027
Spiga, A., Faure, J., Madeleine, J.-B., Määttänen, A., & Forget, F. (2013). Rocket dust storms and detached dust layers in the Martian atmosphere. Journal of Geophysical Research: Planets, 118, 746–767. https://doi.org/10.1002/jgre.20046
Takahashi, Y. O., Fujiwara, H., Fukunishi, H., Odaka, M., Hayashi, Y.-Y., & Watanabe, S. (2003). Topographically induced north-south asymmetry of the meridional circulation in the Martian atmosphere. Journal of Geophysical Research, 108(E3), 5018. https://doi.org/10.1029/2001JE001638
Trompet, L., Mahieux, A., Ristic, B., Robert, S., Wilquet, V., Thomas, I. R., Vandaele, A. C., & Bertaux, J. -L. (2016). Improved algorithm for the transmittance estimation of spectra obtained with SOIR/Venus Express. Applied Optics, 55(32), 9275. https://doi.org/10.1364/AO.55.009275
Vandaele, A. C., De Mazière, M., Drummond, R., Mahieux, A., Neefs, E., Wilquet, V., Korablev, O., Fedorova, A., Belyaev, D., Montmessin, F., & Bertaux, J.-L. (2008). Composition of the Venus mesosphere measured by Solar Occultation at Infrared on board Venus Express. Journal of Geophysical Research, 113, E00B23. https://doi.org/10.1029/2008JE003140
Vandaele, A. C., Korablev, O., Daerden, F., Aoki, S., Thomas, I. R., Altieri, F., López-Valverde, M., Villanueva, G. L., Liuzzi, G., Smith, M. D., Erwin, J. T., Trompet, L., Fedorova, A. A., Montmessin, F., Trokhimovskiy, A., Belyaev, D. A., Ignatiev, N. I., Luginin, M., Olsen, K. S., Baggio, L., Alday, J., Bertaux, J.-L., Betsis, D., Bolsée, D., Clancy, R. T., Cloutis, E., Depiesse, C., Funke, B., Garcia-Comas, M., Gérard, J. -C., Giuranna, M., Gonzalez-Galindo, F., Grigoriev, A. V., Ivanov, Y. S., Kaminski, J., Karatekin, O., Lefèvre, F., Lewis, S., López-Puertas, M., Mahieux, A., Maslov, I., Mason, J., Mumma, M. J., Neary, L., Neefs, E., Patrakeev, A., Patsaev, D., Ristic, B., Robert, S., Schmidt, F., Shakun, A., Teanby, N. A., Viscardy, S., Willame, Y., Whiteway, J., Wilquet, V., Wolff, M. J., Bellucci, G., Patel, M. R., López-Moreno, J.-J., Forget, F., Wilson, C. F., Svedhem, H., Vago, J. L., Rodionov, D., NOMAD Science Team & ACS Science Team (2019). Martian dust storm impact on atmospheric H2O and D/H observed by ExoMars Trace Gas Orbiter. Nature, 568(7753), 521–525. https://doi.org/10.1038/s41586-019-1097-3
Vandaele, A. C., Kruglanski, M., & De Maziere, M. (2006). Simulation and retrieval of atmospheric spectra using ASIMUT, paper presented at Atmospheric Science Conference, Eur. Space Agency, Frascati, Italy.
Vandaele, A. C., Lopez-Moreno, J.-J., Patel, M. R., Bellucci, G., Allen, M., Alonso-Rodrigo, G., Altieri, F., Aoki, S., Bolsée, D., Clancy, T., Cloutis, E., Daerden, F., Depiesse, C., Drummond, R., Fedorova, A., Formisano, V., Funke, B., Geminale, A., Gérard, J.-C., Giuranna, M., Ignatiev, N., Kaminski, J., Karatekin, O., Kasaba, Y., Leese, M., Lefèvre, F., Lewis, S., López-Puertas, M., López-Valverde, M., Mahieux, A., Mason, J., McConnell, J., Mumma, M., Neary, L., Neefs, E., Renotte, E., Ristic, B., Robert, S., Rodriguez-Gomez, J., Sindoni, G., Smith, M., Stiepen, A., Thomas, I. R., Trokhimovsky, A., Vander Auwera, J., Villanueva, G., Viscardy, S., Whiteway, J., Willame, Y., Wilquet, V., Wolff, M., & the NOMAD Team (2018). NOMAD, an integrated suite of three spectrometers for the ExoMars Trace Gas mission: technical description, science objectives and expected performance. Space Science Reviews, 214(5). https://doi.org/10.1007/s11214-018-0517-2
Vandaele, A. C., Mahieux, A., Robert, S., Berkenbosch, S., Clairquin, R., Drummond, R., Letocart, V., Neefs, E., Ristic, B., Wilquet, V., Colomer, F., Belyaev, D., & Bertaux, J. -L. (2013). Improved calibration of SOIR/Venus Express spectra. Optics Express, 21(18), 21,148–21,161. https://doi.org/10.1364/OE.21.021148
Wang, C., Forget, F., Bertrand, T., Spiga, A., Millour, E., & Navarro, T. (2018). Parameterization of rocket dust storms on Mars in the LMD Martian GCM: Modeling details and validation. Journal of Geophysical Research: Planets, 123, 982–1000. https://doi.org/10.1002/2017JE005255