Bailey, R. J., & Smith, D. G. (2005). Quantitative evidence for the fractal nature of the stratigraphic record: Results and implications. Proceedings of the Geological Association, 116, 129–138. https://doi.org/10.1016/S0016-7878(05)80004-5
Becker, R. T., Gradstein, F. M., & Hammer, O. (2012). The Devonian Period. In: F. M. Gradstein, J. G. Ogg, M. D. Schmitz, & G. M. Ogg (Eds.), The geologic time scale 2012 (pp. 559–601). Amsterdam: Elsevier.
Belkhedim, S., Jarochowska, E., Benhamou, M., Nemra, A., Sadji, R., & Munnecke, A. (2019). Interplay of autogenic and allogenic processes on the formation of shallow carbonate cycles in a synrift setting (Lower Pliensbachian, Traras Mountains, NW Algeria). Journal of Sedimentary Research, 89, 784–807. https://doi.org/10.2110/jsr.2019.33
Berger, A., Loutre, M. F., & Laskar, J. (1992). Stability of the astronomical frequencies over the Earth's history for paleoclimate studies. Science, 255, 560–566. https://doi.org/10.1126/science.255.5044.560
Bosence, D., Procter, E., Aurell, M., Kahla, A. B., Boudagher-Fadel, M., Casaglia, F., … Waltham, D. (2009). A dominant tectonic signal in high-frequency, peritidal carbonate cycles? A regional analysis of Liassic platforms from Western Tethys. Journal of Sedimentary Research, 79, 389–415. https://doi.org/10.2110/jsr.2009.038
Boulila, S., Galbrun, B., Huret, E., Hinnov, L. A., Rouget, I., Gardin, S., & Bartolini, A. (2014). Astronomical calibration of the Toarcian Stage: Implications for sequence stratigraphy and duration of the early Toarcian OAE. Earth and Planetary Science Letters, 386, 98–111. https://doi.org/10.1016/j.epsl.2013.10.047
Brownlaw, R. L. S. (2000). Rugose coral stratigraphy and cyclostratigraphy of the Middle and Upper Devonian carbonate complexes, Lennard Shelf, Canning Basin, Western Australia. Ph.D. Thesis, University of Queensland, Brisbane, Australia, 325 p.
Brownlaw, R. L. S., Hearn, S. J., & Jell, J. S. (1998). Spectral analysis of the back-reef limestones of the “Devonian Great Barrier Reef”, Western Australia. Proceedings of the Royal Society of Queensland, 107, 99–107.
Brownlaw, R. L. S., Hocking, R. M., & Jell, J. S. (1996). High frequency sea-level fluctuations in the Pillara Limestone, Guppy Hills, Lennard Shelf, Northwestern Australia. Historical Biology, 11, 187–212. https://doi.org/10.1080/10292389609380541
Brownlaw, R. L. S., & Jell, J. S. (2008). Middle and Upper Devonian rugose corals from the Canning Basin, Western Australia. Memoirs of the Association of Australasian Palaeontologists, 35, 1–126.
Burgess, P. M. (2006). The signal and the noise: Forward modeling of allocyclic and autocyclic processes influencing peritidal carbonate stacking patterns. Journal of Sedimentary Research, 76, 962–977. https://doi.org/10.2110/jsr.2006.084
Burgess, P. M. (2016). Identifying ordered strata: Evidence, methods, and meaning. Journal of Sedimentary Research, 86, 148–167. https://doi.org/10.2110/jsr.2016.10
Burgess, P. M., Wright, V. P., & Emery, D. (2001). Numerical forward modelling of peritidal carbonate parasequence development: Implications for outcrop interpretation. Basin Research, 13, 1–16. https://doi.org/10.1046/j.1365-2117.2001.00130.x
Carr, T. R. (1982). Log-linear models, Markov chains and cyclic sedimentation. Journal of Sedimentary Petrology, 52, 905–912. https://doi.org/10.1306/212F808A-2B24-11D7-8648000102C1865D
Chen, C., & Hiscott, R. N. (1999a). Statistical analysis of turbidite cycles in submarine fan successions: Tests for short-term persistence. Journal of Sedimentary Research, 69, 486–504. https://doi.org/10.2110/jsr.69.486
Chen, C., & Hiscott, R. N. (1999b). Statistical analysis of facies clustering in submarine-fan turbidite successions. Journal of Sedimentary Research, 69, 505–517. https://doi.org/10.2110/jsr.69.505
Chen, D., Tucker, M. E., Jiang, M., & Zhu, J. (2001). Long-distance correlation between tectonic controlled, isolated carbonate platforms by cyclostratigraphy and sequence stratigraphy in the Devonian of South China. Sedimentology, 48, 57–78. https://doi.org/10.1111/j.1365-3091.2001.00351.x
Chow, N., George, A. D., & Trinajstic, K. M. (2004). Tectonic control on development of a Frasnian-Famennian (Late Devonian) palaeokarst surface, Canning Basin reef complexes, northwestern Australia. Australian Journal of Earth Sciences, 51, 911–917. https://doi.org/10.1111/j.1400-0952.2004.01493.x
Chow, N., George, A. D., Trinajstic, K. M., & Chen, Z. Q. (2013). Stratal architecture and platform evolution of an early Frasnian syn-tectonic carbonate platform, Canning Basin, Australia. Sedimentology, 60, 1583–1620. https://doi.org/10.1111/sed.12041
Crick, R. E., Ellwood, B. B., Hladil, J., El Hassani, A., Feist, R., & Hladil, J. (1997). Magnetosusceptibility event and cyclostratigraphy (MSEC) of the Eifelian -Givetian GSSP and associated boundary sequences in North Africa and Europe. Episodes, 20, 167–175. https://doi.org/10.18814/epiiugs/1997/v20i3/004
Da Silva, A. C., & Boulvain, F. (2006). Upper Devonian carbonate platform correlations and sea level variations recorded in magnetic susceptibility. Palaeogeography, Palaeoclimatology, Palaeoecology, 240, 373–388. https://doi.org/10.1016/j.palaeo.2006.02.012
Da Silva, A. C., De Vleeschouwer, D., Boulvain, F., Claeys, P., Fagel, N., Humblet, M., … Dekkers, M. J. (2013). Magnetic susceptibility as a high-resolution correlation tool and as a climatic proxy in Paleozoic rocks – Merits and pitfalls: Examples from the Devonian in Belgium. Marine and Petroleum Geology, 46, 173–189. https://doi.org/10.1016/j.marpetgeo.2013.06.012
Da Silva, A. C., Dekkers, M. J., De Vleeschouwer, D., Hladil, J., Chadimova, L., Slavík, L., & Hilgen, F. J. (2018). Millennial-scale climate changes manifest Milankovitch combination tones and Hallstatt solar cycles in the Devonian greenhouse world. Geology, 47, 19–22. https://doi.org/10.1130/G45511.1
Da Silva, A. C., Dekkers, M. J., De Vleeschouwer, D., Hladil, J., Chadimova, L., Slavík, L., & Hilgen, F. J. (2019). Millennial-scale climate changes manifest Milankovitch combination tones and Hallstatt solar cycles in the Devonian greenhouse world: REPLY. Geology, 47, e489–e490. https://doi.org/10.1130/G46732Y.1
Da Silva, A. C., Hladil, J., Chadimova, L., Slavík, L., Hilgen, F. J., Bábek, O., & Dekkers, M. J. (2016). Refining the Early Devonian time scale using Milankovitch cyclicity in Lochkovian-Pragian sediments (Prague Synform, Czech Republic). Earth and Planetary Science Letters, 455, 125–139. https://doi.org/10.1016/j.epsl.2016.09.009
Da Silva, A. C., Mabille, C., & Boulvain, F. (2009). Influence of sedimentary setting on the use of magnetic susceptibility: Examples from the Devonian of Belgium. Sedimentology, 56, 1292–1306. https://doi.org/10.1111/j.1365-3091.2008.01034.x
Da Silva, A. C., Potma, K., Weissenberger, J. A. W., Whalen, M. T., Mabille, C., & Boulvain, F. (2009). Magnetic susceptibility evolution and sedimentary environments on carbonate platform sediments and atolls, comparison of the Frasnian from Belgium and from Alberta. Sedimentary Geology, 214, 3–18. https://doi.org/10.1016/j.sedgeo.2008.01.010
Da Silva, A. C., Whalen, M. T., Hladil, J., Chadimova, L., Chen, D., Spassov, S., … Devleeschouwer, X. (2015). Magnetic susceptibility application: a window onto ancient environments and climatic variations: foreword. In: A. C. Da Silva, & M. T. Whalen J. Hladil, L. Chadimova, D. Chen, S. Spassov, F. Boulvain, & X. Devleeschouwer (Eds.), Magnetic susceptibility application: a window onto ancient environments and climate (Vol. 414, pp. 1–13). Geological Society, London, Special Publications. https://doi.org/10.1144/SP414.12
De Benedictis, D., Bosence, D., & Waltham, D. (2007). Tectonic control on peritidal carbonate parasequence formation: An investigation using forward tectono-stratigraphic modelling. Sedimentology, 54, 587–605. https://doi.org/10.1111/j.1365-3091.2006.00851.x
De Vleeschouwer, D., Boulvain, F., Da Silva, A. C., Pas, D., Labaye, C., & Claeys, P. (2014). The astronomical calibration of the Givetian (Middle Devonian) timescale (Dinant Synclinorium, Belgium). In: A. C. Da Silva, M. T. Whalen, J. Hladil, L. Chadimova, D. Chen, S. Spassov, F. Boulvain, & X. Devleeschouwer (Eds.), Magnetic susceptibility application: a window onto ancient environments and climate (Vol. 414, pp. 245–256). Geological Society, London, Special Publications. https://doi.org/10.1144/SP414.3
De Vleeschouwer, D., Da Silva, A. C., Sinnesael, M., Chen, D., Day, J. E., Whalen, M. T., … Claeys, P. (2017). Timing and pacing of the Late Devonian mass extinction event regulated by eccentricity and obliquity. Nature Communications, 8, 2268. https://doi.org/10.1038/s41467-017-02407-1
De Vleeschouwer, D., Rakociński, M., Racki, G., Bond, D. P., Sobień, K., & Claeys, P. (2013). The astronomical rhythm of Late-Devonian climate change (Kowala section, Holy Cross Mountains, Poland). Earth and Planetary Science Letters, 365, 25–37. https://doi.org/10.1016/j.epsl.2013.01.016
De Vleeschouwer, D., Whalen, M. T., Day, J. E., & Claeys, P. (2012). Cyclostratigraphic calibration of the Frasnian (Late Devonian) time-scale (Western Alberta, Canada). GSA Bulletin, 124, 928–942. https://doi.org/10.1130/B30547.1
Doglioni, C., & Goldhammer, R. K. (1988). Compaction-induced subsidence in the margin of a carbonate platform. Basin Research, 1, 237–246. https://doi.org/10.1111/j.1365-2117.1988.tb00019.x
Dörling, S. L., Dentith, M. C., Groves, D. I., Playford, P. E., Vearncombe, J. R., Muhling, P., & Windrim, D. (1996). Heterogeneous brittle deformation in the Devonian carbonate rocks of the Pillara Range, Canning Basin: Implications for the structural evolution of the Lennard Shelf. Australian Journal of Earth Sciences, 43, 15–29. https://doi.org/10.1080/08120099608728232
Dorobek, S. L. (2008). Tectonic and depositional controls on syn-rift carbonate platform sedimentation. In: J. Lukasik, & J. A. Simo (Eds.), Controls on carbonate platform and reef development (Vol. 89, pp. 57–81). Society of Sedimentary Geology, Special Publication. https://doi.org/10.2110/pec.08.89.0057
Drummond, C. N. (1999). Bed-thickness structure of multi-sourced ramp turbidites: Devonian Brallier Formation, Central Appalachian Basin. Journal of Sedimentary Research, 69, 115–121. https://doi.org/10.2110/jsr.69.115
Drummond, C. N., & Coates, J. (2000). Exploring the statistics of sedimentary bed thicknesses - two case studies. Journal of Geoscience Education, 48, 487–499. https://doi.org/10.5408/1089-9995-48.4.487
Eberli, G. P. (2013). The uncertainties involved in extracting amplitude and frequency of orbitally driven sea-level fluctuations from shallow-water carbonate cycles. Sedimentology, 60, 64–84. https://doi.org/10.1111/sed.12011
Ellwood, B. B., Algeo, T. J., El Hassani, A., Tomkin, J. H., & Rowe, H. D. (2011). Defining the timing and duration of the Kačák Interval within the Eifelian/Givetian boundary GSSP, Mech Irdane, Morocco, using geochemical and magnetic susceptibility patterns. Palaeogeography, Palaeoclimatology, Palaeoecology, 304, 74–84. https://doi.org/10.1016/j.palaeo.2010.10.012
Ellwood, B. B., Crick, R. E., El Hassani, A., Benoist, S. L., & Young, R. H. (2000). Magnetosusceptibility event and cyclostratigraphy method applied to marine rocks: Detrital input versus carbonate productivity. Geology, 28, 1135–1138. https://doi.org/10.1130/0091-7613(2000)28%3C1135:MEACMA%3E2.0.CO;2
Ellwood, B. B., Tomkin, J. H., El Hassani, A., Bultynck, P., Brett, C. E., Schindler, E., … Bartholomew, A. J. (2011). A climate-driven model and development of a floating point time scale for the entire Middle Devonian Givetian Stage: A test using magnetostratigraphy susceptibility as a climate proxy. Palaeogeography, Palaeoclimatology, Palaeoecology, 304, 85–95. https://doi.org/10.1016/j.palaeo.2010.10.014
Ellwood, B. B., Wang, W. H., Tomkin, J. H., Ratcliffe, K. T., El Hassani, A., & Wright, A. M. (2013). Testing high resolution magnetic susceptibility and gamma radiation methods in the Cenomanian-Turonian (Upper Cretaceous) GSSP and near-by coeval section. Palaeogeography, Palaeoclimatology, Palaeoecology, 378, 75–90. https://doi.org/10.1016/j.palaeo.2013.02.018
Fischer, A. G. (1964). The Lofer cyclothems of the Alpine Triassic. In: D. F. Merriam (Ed.), Symposium on cyclic sedimentation (Vol. 169, pp. 107–149). Kansas Geological Survey Bulletin.
García-Alcalde, J. L., Ellwood, B. B., Soto, F., Truyóls-Massoni, M., & Tomkin, J. H. (2012). Precise timing of the Upper Taghanic Biocrisis, Geneseo Bioevent, in the Middle-Upper Givetian (Middle Devonian) boundary in Northern Spain using biostratigraphic and magnetic susceptibility data sets. Palaeogeography, Palaeoclimatology, Palaeoecology, 313–314, 26–40. https://doi.org/10.1016/j.palaeo.2011.10.006
George, A. D., Chow, N., & Trinajstic, K. M. (2009). Syndepositional fault control on Lower Frasnian platform evolution, Lennard Shelf, Canning Basin, Australia. Geology, 37, 331–334. https://doi.org/10.1130/G25461A.1
George, A. D., Trinajstic, K. M., & Chow, N. (2009). Frasnian reef evolution and palaeogeography, SE Lennard Shelf, Canning Basin, Australia. In: P. Könighsof (Ed.), Devonian change: case studies in palaeogeography and palaeoecology (Vol. 314, pp. 73–107). Geological Society, London, Special Publications. doi: 10.1144/SP314.4. https://doi.org/10.1144/SP314.4
Goldhammer, R. K. (1997). Compaction and decompaction algorithms for sedimentary carbonates. Journal of Sedimentary Research, 67, 26–35. https://doi.org/10.1306/D42684E1-2B26-11D7-8648000102C1865D
Goldhammer, R. K., Lehmann, P. J., & Dunn, P. A. (1993). The origin of high-frequency platform carbonate cycles and third-order sequences (Lower Ordovician El Paso Gp, West Texas); constraints from outcrop data and stratigraphic modeling. Journal of Sedimentary Research, 63, 318–359. https://doi.org/10.1306/D4267AFA-2B26-11D7-8648000102C1865D
Goodman, L. A. (1968). The analysis of cross-classified data: Independence, quasi-independance and interactions in contingency tables with or without missing entries. Journal of the American Statistical Association, 63, 1091–1131. https://doi.org/10.1080/01621459.1968.10480916
Grabowski, J., Narkiewicz, M., & De Vleeschouwer, D. (2015). Forcing factors of the magnetic susceptibility signal in lagoonal and subtidal depositional cycles from the Zachełmie section (Eifelian, Holy Cross Mountains, Poland). In: A. C. Da Silva, M. T. Whalen, J. Hladil, L. Chadimova, D. Chen, S. Spassov, F. Boulvain, & X. Devleeschouwer (Eds.), Magnetic susceptibility application: A window onto ancient environments and climate (Vol. 414, pp. 225–244). Geological Society, London, Special Publications. https://doi.org/10.1144/SP414.5
Harper, C. W. J. (1984a). Facies model revisited: An examination of quantitative methods. Geoscience Canada, 11, 203–207.
Harper, C. W. J. (1984b). Improved methods of facies sequence analysis, In: R. G. Walker (Ed.), Facies models (Second Edition, pp. 1–13), Geoscience Canada Reprint Series 1, Geological Association of Canada.
Hilgen, F. J., Hinnov, L. A., Aziz, H. A., Abels, H. A., Batenburg, S., Bosmans, J. H., … Zeeden, C. (2015). Stratigraphic continuity and fragmentary sedimentation: the success of cyclostratigraphy as part of integrated stratigraphy. In: D. G. Smith, R. J. Bailey, P. M. Burgess, & A. J. Fraser (Eds.), Strata and time: Probing the gaps in our understanding (Vol. 404, pp. 157–197). Geological Society, London, Special Publications. https://doi.org/10.1144/SP404.12
Hill, J., Wood, R., Curtis, A., & Tetzlaff, D. M. (2012). Preservation of forcing signals in shallow water carbonate sediments. Sedimentary Geology, 275, 79–92. https://doi.org/10.1016/j.sedgeo.2012.07.017
Hillbun, K. N. (2015). Re-evaluating the late devonian mass extinction: A geochemical investigation of the relationship between carbon isotope fluctuations, faunal turnover, and paleoenvironmental change recorded in Upper Devonian carbonates of the Lennard Shelf, Western Australia. Ph.D. Thesis, Seattle: University of Washington, 266 p.
Hillbun, K., Playton, T. E., Katz, D. A., Tohver, E., Trinajstic, K., Haines, P. W., … Montgomery, P. (2016). Correlation and sequence stratigraphic interpretation of Upper Devonian carbonate slope facies using carbon isotope chemostratigraphy, Lennard Shelf, Canning Basin, Western Australia. In: T. E. Playton, C. Kerans, & J. A. W. Weissenberger (Eds.), New advances in Devonian carbonates: outcrop analogs, reservoirs, and chronostratigraphy (Vol. 107, pp. 248–301). SEPM Special Publication. https://doi.org/10.2110/sepmsp.107.09
Hinnov, L. A. (2000). New perspectives on orbitally forced stratigraphy. Annual Review of Earth and Planetary Sciences, 28, 419–475. https://doi.org/10.1146/annurev.earth.28.1.419
Hinnov, L. A. (2018). Cyclostratigraphy and astrochronology in 2018. In: M. Montenari (Ed.), Stratigraphy & timescales: Cyclostratigraphy and astrochronology (pp. 1–80). Cambridge, MA: Academic Press. https://doi.org/10.1016/bs.sats.2018.08.004
Hinnov, L. A., Wu, H., & Fang, Q. (2016). Reply to the comment on “Geologic evidence for chaotic behavior of the planets and its constraints on the third-order eustatic sequences at the end of the Late Paleozoic Ice Age” by Qiang Fang, Huaichun Wu, Linda A. Hinnov, Xiuchun Jing, Xunlian Wang, and Qingchun Jiang [Palaeogeography Palaeoclimatology Palaeoecology 400 (2015) 848–859]. Palaeogeography, Palaeoclimatology, Palaeoecology, 461, 475–480. https://doi.org/10.1016/j.palaeo.2016.07.030
Hocking, R. M., & Playford, P. E. (2000). Cycle types in carbonate platform facies, Devonian reef complexes, Canning Basin, Western Australia. Geological Survey of Western Australia, Annual Review, 2000–2001, 74–80.
Kaufmann, B. (2006). Calibrating the Devonian Time Scale: A synthesis of U-Pb ID-TIMS ages and conodont stratigraphy. Earth-Science Reviews., 76, 175–190. https://doi.org/10.1016/j.earscirev.2006.01.001
Kemp, D. B. (2011). Shallow-water records of astronomical forcing and the eccentricity paradox. Geology, 39, 491–494. https://doi.org/10.1130/G31878.1
Kemp, D. B., & Van Manen, S. M. (2019). Metre-scale cycles in shallow water carbonate successions: Milankovitch and stochastic origins. Sedimentology, https://doi.org/10.1111/sed.12609
Kemp, D. B., Van Manen, S. M., Pollitt, D. A., & Burgess, P. M. (2016). Investigating the preservation of orbital forcing in peritidal carbonates. Sedimentology, 63, 1701–1718. https://doi.org/10.1111/sed.12282
Klapper, G. (2007). Frasnian (Upper Devonian) conodont succession at Horse Spring and correlative sections, Canning Basin, Western Australia. Journal of Paleontology, 81, 513–537. https://doi.org/10.1666/05088.1
Koerschner, W. F. III, & Read, J. F. (1989). Field and modelling studies of Cambrian carbonate cycles, Virginia Appalachians. Journal of Sedimentary Research, 59, 654–687. https://doi.org/10.1306/212F9048-2B24-11D7-8648000102C1865D
Königshof, P., Da Silva, A. C., Suttner, T. J., Kido, E., Waters, J., Carmichael, S. K., … Spassov, S. (2015). Shallow-water facies setting around the Kačák Event: a multidisciplinary approach. In: R. T. Becker, P. Könighsof, & C. E. Brett (Eds.), Devonian climate, sea level and evolutionary events (Vol. 423, pp. 171–199). Geological Society, London, Special Publications. https://doi.org/10.1144/SP423.4
Lehrmann, D. J., & Goldhammer, R. K. (1999). Secular variation in parasequence and facies stacking patterns of platform carbonates: a guide to application of stacking pattern analysis in strata of diverse ages and settings. In: P. M. Harris, A. H. Saller, & J. A. Simo (Eds.), Advances in carbonate sequence stratigraphy: applications to reservoirs, outcrops, and models (Vol. 63, pp. 187–225). SEPM Special Publication.
Machlus, M. L., Olsen, P. E., Christie-Blick, N., & Hemming, S. R. (2008). Spectral analysis of the lower Eocene Wilkins Peak Member, Green River Formation, Wyoming: Support for Milankovitch cyclicity. Earth and Planetary Science Letters, 268, 64–75. https://doi.org/10.1016/j.epsl.2007.12.024
Martinez, M. (2018). Chapter four - mechanisms of preservation of the eccentricity and longer-term milankovitch cycles in detrital supply and carbonate production in hemipelagic marl-limestone alternations. In: M. Montenari (Ed.), Stratigraphy & timescales: Cyclostratigraphy and Astrochronology (pp. 189–218). Cambridge, MA: Academic Press. https://doi.org/10.1016/bs.sats.2018.08.002
Martinez, M., Kotov, S., De Vleeschouwer, D., Damien, P., & Pälike, H. (2016). Testing the impact of stratigraphic uncertainty on spectral analyses of sedimentary series. Climate of the past, 12, 1765–1783. https://doi.org/10.5194/cp-12-1765-2016
McLean, D. J., & Mountjoy, E. W. (1994). Allocyclic control on Late Devonian buildup development, southern Canadian Rocky Mountains. Journal of Sedimentary Research, 64, 326–394. https://doi.org/10.1306/D4267FBE-2B26-11D7-8648000102C1865D
Meyers, S. R. (2015). The evaluation of eccentricity-related amplitude modulation and bundling in paleoclimate data: An inverse approach for astrochronologic testing and time scale optimization. Paleoceanography, 30, 1625–1640. https://doi.org/10.1002/2015PA002850
Meyers, S. R. (2019). Cyclostratigraphy and the problem of astrochronologic testing. Earth-Science Reviews, 190, 190–223. https://doi.org/10.1016/j.earscirev.2018.11.015
Meyers, S. R., & Sageman, B. B. (2007). Quantification of deep-time orbital forcing by average spectral misfit. American Journal of Science, 307, 773–792. https://doi.org/10.2475/05.2007.01
Meyers, S. R., Sageman, B. B., & Hinnov, L. A. (2001). Integrated quantitative stratigraphy of the Cenomanian-Turonian Bridge Creek Limestone Member using evolutive harmonic analysis and stratigraphic modeling. Journal of Sedimentary Research, 71, 628–644. https://doi.org/10.1306/012401710628
Miall, A. D. (1973). Markov chain analysis applied to an ancient alluvial plain succession. Sedimentology, 20, 347–364. https://doi.org/10.1111/j.1365-3091.1973.tb01615.x
Ndiaye, M. A. (2007a). A multipurpose software for stratigraphic signal analysis. Ph.D. Thesis. Université de Genève, Département de Géologie et Paléontologie, 118 p.
Ndiaye, M. A. (2007b). Multipurpose software for stratigraphic signal analysis (version 1.0.4). Retrieved from http://home.etu.unige.ch/~ndiayma8/
Osleger, D. (1991). Subtidal carbonate cycles: Implications for allocyclic vs. autocyclic controls. Geology, 19, 917–920. https://doi.org/10.1130/0091-7613(1991)019%3C0917:SCCIFA%3E2.3.CO;2
Pas, D., Hinnov, L., Day, J. E., Kodama, K., Sinnesael, M., & Liu, W. (2018). Cyclostratigraphic calibration of the Famennian stage (Late Devonian, Illinois Basin, USA). Earth and Planetary Science Letters, 488, 102–114. https://doi.org/10.1016/j.epsl.2018.02.010
Peterhänsel, A., & Egenhoff, S. O. (2008) Lateral variabilities of cycle stacking patterns in the Latemar, Triassic, Italian Dolomites. In: J. Lukasik, & J. A. Simo (Ed.), Controls on carbonate platform and reef development (Vol. 89 pp. 217–229), SEPM Special Publication. https://doi.org/10.2110/pec.08.89.0217
Playford, P. E. (1980). Devonian “Great Barrier Reef” of Canning Basin, Western Australia. AAPG Bulletin, 64, 814–840. https://doi.org/10.1306/2F9193BE-16CE-11D7-8645000102C1865D
Playford, P. E., Hocking, R. M., & Cockbain, A. E. (2009). Devonian reef complexes of the Canning Basin, Western Australia. Bulletin of the Geological Survey of. Western Australia, 145, 444. https://doi.org/10.2110/sepmsp.106.05
Playford, P. E., Hurley, N. F., Kerans, C., & Middleton, M. F. (1989). Reefal platform development, Devonian of the Canning Basin, Western Australia. In: P. D. Crevello, J. L. Wilson, J. F. Sarg, & J. F. Read (Eds.), Controls on carbonate platform and basin development (Vol. 44, pp. 187–202). SEPM Special Publication. https://doi.org/10.2110/pec.89.44.0187
Playton, T. E., Hocking, R. M., Tohver, E., Hillbun, K., Haines, P. W., & Trinajstic, K. … Wray, D. (2016). Integrated stratigraphic correlation of Upper Devonian platform-to-basin carbonate sequences, Lennard Shelf, Canning Basin, Western Australia: advances in carbonate margin-to-slope sequence stratigraphy and stacking patterns. In: T. E. Playton, C. Kerans, & J. A. W. Weissenberger (Eds), New advances in Devonian carbonates: outcrop analogs, reservoirs, and chronostratigraphy (Vol. 107, 248–301). SEPM Special Publication. https://doi.org/10.2110/sepmsp.107.10
Playton, T. E., & Kerans, C. (2015). Late Devonian carbonate margins and foreslopes of the Lennard Shelf, Canning Basin, Western Australia, part A: Development during backstepping and the aggradation-to-progradation transition. Journal of Sedimentary Research, 85, 1334–1361. https://doi.org/10.2110/jsr.2015.84
Pollitt, D. A., Burgess, P. M., & Wright, V. P. (2014). Investigating the occurrence of hierarchies of cyclicity in platform carbonates. In: D. G. Smith, R. J. Bailey, P. M. Burgess, & A. J. Fraser (Eds.), Strata and Time: Probing the Gaps in Our Understanding (Vol. 404, pp. 123–150). Geological Society, London, Special Publications. https://doi.org/10.1144/SP404.3
Powers, D. W., & Easterling, R. G. (1982). Improved methodology for using embedded Markov chains to describe cyclical sediments. Journal of Sedimentary Petrology, 52, 913–923. https://doi.org/10.1306/212F808F-2B24-11D7-8648000102C1865D
Pratt, B. R., & James, N. P. (1986). The St George Group (Lower Ordovician) of western Newfoundland: Tidal flat island model for carbonate sedimentation in shallow epeiric seas. Sedimentology, 33, 313–343. https://doi.org/10.1111/j.1365-3091.1986.tb00540.x
Prokoph, A., & Agterberg, F. P. (1999). Detection of sedimentary cyclicity and stratigraphic completeness by wavelet analysis: An application to late Albian cyclostratigraphy of the western Canada sedimentary basin. Journal of Sedimentary Research, 69, 862–875. https://doi.org/10.2110/jsr.69.862
Rankey, E. C. (2002). Spatial patterns of sediment accumulation on a Holocene carbonate tidal flat, northwest Andros Island, Bahamas. Journal of Sedimentary Research, 72, 591–601. https://doi.org/10.1306/020702720591
Read, J. F. (1973). Carbonate cycles, Pillara Formation (Devonian), Canning Basin, Western Australia. Bulletin of Canadian Petroleum Geology, 21, 38–51. https://doi.org/10.35767/gscpgbull.21.1.038
Read, J. F., Osleger, D., & Elrick, M. (1991). Two-dimensional modeling of carbonate ramp sequences and component cycles. In: E. K. Franseen, W. L. Watney, C. G. St. Kendall, & W. Ross (Eds.), Sedimentary modeling: Computer simulations and methods for improved parameter definition. (Vol. 233, pp. 473–488). Kansas Geological Survey Bulletin.
Riquier, L., Averbuch, O., Devleeschouwer, X., & Tribovillard, N. (2010). Diagenetic versus detrital origin of the magnetic susceptibility variations in some carbonate Frasnian-Famennian boundary sections from Northern Africa and Western Europe: Implications for paleoenvironmental reconstructions. International Journal of Earth Sciences, 99, 57–73. https://doi.org/10.1007/s00531-009-0492-7
Rothman, D. H., & Grotzinger, J. P. (1995). Scaling properties of gravity-driven sediments. Nonlinear Processes in Geophysics, 2, 178–185. https://doi.org/10.5194/npg-2-178-1995
Samankassou, E., & Enos, P. (2019). Lateral facies variations in the Triassic Dachstein platform: A challenge for cyclostratigraphy. The Depositional Record, 5, 469–485. https://doi.org/10.1002/dep2.80
Sardar Abadi, A., Da Silva, A. C., Amini, A., Boulvain, F., Sardar Abadi, M. H., & Aliabadi, A. A. (2014). Tectonically-controlled sedimentation: Impact on sediment supply and basin evolution during the Middle Jurassic Kashafrud Formation, Kopeh-Dagh Basin, northeast Iran. International Journal of Earth Sciences, 103, 2233–2254. https://doi.org/10.1007/s00531-014-1041-6
Schlager, W. (2005). Carbonate Sedimentology and Sequence Stratigraphy. Concepts in Sedimentology and Paleontology (Vol. 8, 200 p.). SEPM. https://doi.org/10.2110/csp.05.08
Schwarzacher, W. (2000). Repetitions and cycles in stratigraphy. Earth-Science Reviews, 50, 51–75. https://doi.org/10.1016/S0012-8252(99)00070-7
Śliwiński, M. G., Whalen, M. T., Meyer, F. J., & Majs, F. (2012). Constraining clastic input controls on magnetic susceptibility and trace element anomalies during the Late Devonian punctata Event in the Western Canada Sedimentary Basin. Terra Nova, 24, 301–309. https://doi.org/10.1111/j.1365-3121.2012.01063.x
Smith, D. G. (2019). Millennial-scale climate changes manifest Milankovitch combination tones and Hallstatt solar cycles in the Devonian greenhouse world: Comment. Geology, 47, e488–e488. https://doi.org/10.1130/G46475C.1
Southgate, P. N., Kennard, J. M., Jackson, M. J., O’Brien, P. E., & Sexton, M. J. (1993). Reciprocal lowstand clastic and highstand carbonate sedimentation, subsurface Devonian reef complex, Canning Basin, Western Australia. In: R. G. Loucks, & J. F. Sarg (Eds.), Carbonate sequence stratigraphy (Vol. 57, pp. 157–179). AAPG Memoir. https://doi.org/10.1306/M57579C6
Strasser, A. (2018). Cyclostratigraphy of shallow-marine carbonates: limitations and opportunities. In: M. Montenari (Ed.), Stratigraphy & timescales: cyclostratigraphy and astrochronology (pp. 151–187). Cambridge, MA: Academic Press. https://doi.org/10.1016/bs.sats.2018.07.001
Tucker, M., & Garland, J. (2010). High-frequency cycles and their sequence stratigraphic context: Orbital forcing and tectonic controls on Devonian cyclicity, Belgium (The André Dumont medallist lecture). Geologica Belgica, 13, 213–240.
Türk, G. (1979). Transition analysis of structural sequences: Discussion. Geological Society of America Bulletin, 90, 989–991. https://doi.org/10.1130/0016-7606(1979)90%3C989:TAOSSD%3E2.0.CO;2
Ward, B. W. (1999). Tectonic control on backstepping sequences revealed by mapping of Frasnian backstepped platforms, Devonian reef complexes, Napier Range, Canning Basin, Western Australia. In: P. M. Harris, A. H. Saller, & J. A. Simo (Eds.), Advances in carbonate sequence stratigraphy: application to reservoirs, outcrops, and models (Vol. 63, pp. 47–74). SEPM Special Publication. https://doi.org/10.2110/pec.99.11.0047
Weedon, G. P. (2003). Time-series analysis and cyclostratigraphy: Examining stratigraphic records of environmental cycles, Cambridge: Cambridge University Press.
Weij, R., Reijmer, J. J. G., Eberli, G. P., & Swart, P. K. (2018). The limited link between accommodation space, sediment thickness, and inner platform facies distribution (Holocene-Pleistocene, Bahamas). The Depositional Record, 5, 400–420. https://doi.org/10.1002/dep2.50
Westphal, H., Hilgen, F., & Munnecke, A. (2010). An assessment of the suitability of individual rhythmic carbonate successions for astrochronological application. Earth-Science Reviews, 99, 19–30. https://doi.org/10.1016/j.earscirev.2010.02.001
Whalen, M. T., & Day, J. E. (2008). Magnetic susceptibility, biostratigraphy, and sequence stratigraphy: Insights into Devonian carbonate platform development and basin infilling, Western Alberta. In: J. Lukasik, & J. A. Simo (Eds.), Controls on carbonate platform and reef development (Vol. 89, pp. 291–314). Society of Sedimentary Geology, Special Publication. https://doi.org/10.2110/pec.08.89.0291
Whalen, M. T., & Day, J. (2010). Cross-basin variations in magnetic susceptibility influenced by changing sea level, paleogeography, and paleoclimate: Upper Devonian, Western Canada. Journal of Sedimentary Research, 80, 1109–1127. https://doi.org/10.2110/jsr.2010.093
Wilkinson, B. H., Drummond, C. N., Diedrich, N. W., & Rothman, E. D. (1999). Poisson processes of carbonate accumulation on Paleozoic and Holocene platforms. Journal of Sedimentary Research, 69, 338–350. https://doi.org/10.2110/jsr.69.338
Wilkinson, B. H., Drummond, C. N., Rothman, E. D., & Diedrich, N. W. (1997). Stratal order in peritidal carbonate sequences. Journal of Sedimentary Research, 67, 1068–1082. https://doi.org/10.1306/D42686CB-2B26-11D7-8648000102C1865D
Xu, H., & Maccarthy, I. A. J. (1998). Markov chain analysis of vertical facies sequences using a computer software package (SAVFS): Courtmacsherry Formation (Tournaisian), Southern Ireland. Computers & Geosciences, 24, 131–139. https://doi.org/10.1016/S0098-3004(97)00086-1