[en] The synthesis of 5-hydroxymethylfurfural (5-HMF) and 2-furfural (2-F) by hexoses and pentoses dehydration is considered as a promising path to produce materials from renewable resources. Low-transition-temperature mixtures (LTTMs) enable selective (> 80%) dehydration of ketoses to furanic derivatives at moderate temperature (< 100°C). However, aldoses dehydration generally requires higher temperatures and an isomerization catalyst. Chromium trichloride has been reported as one of the most efficient catalyst but its kinetic inertness could limit its performances below 100°C. Consequently, we investigate herein boric acid catalysis of aldoses dehydration in LTTMs based on choline halides and organic acids at 90°C. The limited activity of boric acid regarding furanic compounds synthesis (e.g. 5% 5-HMF yield and 23% glucose conversion after one hour at 90°C with maleic acid) can be enhanced through tetrahydroxyborate esters (THBE) formation with α-hydroxyacids (e.g. 19% 5-HMF yield and 61% glucose conversion after one hour at 90°C). THBE formation is however associated with H3O+ generation favoring the appearance of side products (humins). We demonstrate that boric acid catalysis is not straightforward and that the use of THBE under moderate acidity should be further investigated to limit humins formation and promote furanic derivatives synthesis.
Research Center/Unit :
Laboratoire de Biomasse et Technologies Vertes
Disciplines :
Chemistry
Author, co-author :
Istasse, Thibaut ; Université de Liège - ULiège > Département GxABT > SMARTECH
Lemaur, Vincent; Université de Mons - UMONS > Chimie des matériaux nouveaux
Debroux, Gwénaëlle; Université de Liège - ULiège > SMARTECH > Laboratoire de Biomasse et Technologies Vertes
Bockstal, Lauris ; Université de Liège - ULiège > SMARTECH > Laboratoire de Biomasse et Technologies Vertes
Lazzaroni, Roberto; Université de Mons - UMONS > Chimie des matériaux nouveaux
Richel, Aurore ; Université de Liège - ULiège > Département GxABT > SMARTECH
Language :
English
Title :
Monosaccharides dehydration assisted by formation of borate esters of α-hydroxyacids in choline chloride-based low melting mixtures
Alternative titles :
[fr] Déshydratation de monosaccharides assistée par la formation d'esters de borate et d'alpha hydroxyacides dans des mélanges à bas pont de fusion à base de chlorure de choline.
Publication date :
2020
Journal title :
Frontiers in Chemistry
eISSN :
2296-2646
Publisher :
Frontiers Media S.A., Lausanne, Switzerland
Peer reviewed :
Peer Reviewed verified by ORBi
Name of the research project :
BIOMAT (Low Carbon Footprint Materials)
Funders :
Région wallonne FEDER - Fonds Européen de Développement Régional
Abbott A. P., Alabdullah S. S. M., Al-Murshedi A. Y. M., Ryder K. S., (2018). Brønsted acidity in deep eutectic solvents and ionic liquids. Faraday Discuss. 206, 365–377. 10.1039/C7FD00153C28926059
Babcock L., Pizer R., (1980). Dynamics of boron acid complexation reactions. formation of 1:1 boron acid-ligand complexes. Inorg. Chem. 19, 56–61. 10.1021/ic50203a013
Bali S., Tofanelli M. A., Ernst R. D., Eyring E. M., (2012). Chromium(III) catalysts in ionic liquids for the conversion of glucose to 5-(hydroxymethyl)furfural (HMF): insight into metal catalyst: ionic liquid mediated conversion of cellulosic biomass to biofuels and chemicals. Biomass Bioenergy 42, 224–227. 10.1016/j.biombioe.2012.03.016
Binder J. B., Cefali A. V., Blank J. J., Raines R. T., (2010). Mechanistic insights on the conversion of sugars into 5- hydroxymethylfurfural. Energy Environ. Sci. 3, 765–771. 10.1039/b923961h
Caes B. R., Palte M. J., Raines R. T., (2013). Organocatalytic conversion of cellulose into a platform chemical. Chem. Sci. 4, 196–199. 10.1039/C2SC21403B24596655
Chheda J. N., Román-Leshkov Y., Dumesic J. A., (2007). Production of 5-hydroxymethylfurfural and furfural by dehydration of biomass-derived mono- and poly-saccharides. Green Chem. 9, 342–350. 10.1039/B611568C
Dai Y., van Spronsen J., Witkamp G. J., Verpoorte R., Choi Y. H., (2013). Natural deep eutectic solvents as new potential media for green technology. Anal. Chim. Acta 766, 61–68. 10.1016/j.aca.2012.12.01923427801
Durand E., Lecomte J., Villeneuve P., (2016). From green chemistry to nature: the versatile role of low transition temperature mixtures. Biochimie 120, 119–123. 10.1016/j.biochi.2015.09.01926391220
Enslow K. R., Bell A. T., (2015). The role of metal halides in enhancing the dehydration of xylose to furfural. ChemCatChem 7, 479–489. 10.1002/cctc.201402842
Eseyin A. E., Steele P. H., (2015). An overview of the applications of furfural and its derivatives. Int. J. Adv. Chem. 3:5048. 10.14419/ijac.v3i2.5048
Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., et al. (2016). Gaussian 16 (Revision A.03), Wallingford, CT: Gaussian Inc.
Halpern J. M., Urbanski R., Weinstock A. K., Iwig D. F., Mathers R. T., Recum H., (2014). A biodegradable thermoset polymer made by esterification of citric acid and glycerol. J. Biomed. Mater. Res. A 102, 1467–1477. 10.1002/jbm.a.3482123737239
Harris D. W., Feather M. S., (1975). Studies on the mechanism of the interconversion of D-glucose, D-mannose, and D-fructose in acid solution. J. Am. Chem. Soc. 97, 178–181. 10.1021/ja00834a031
Hu L., Sun Y., Lin L., Liu S., (2012). Catalytic conversion of glucose into 5-hydroxymethylfurfural using double catalysts in ionic liquid. J. Taiwan Inst. Chem. Eng. 43, 718–723. 10.1016/j.jtice.2012.04.001
Istasse T., Bockstal L., Richel A., (2018). Production of 5-hydroxymethylfurfural from D-fructose in low-transition-temperature mixtures enhanced by chloride anions and low amounts of organic acids. Chempluschem 83, 1135–1143. 10.1002/cplu.20180041631950705
Li H., Xu W., Huang T., Jia S., Xu Z., Yan P., et al. (2014). Distinctive aldose isomerization characteristics and the coordination chemistry of metal chlorides in 1-butyl-3-methylimidazolium chloride. ACS Catal. 4, 4446–4454. 10.1021/cs5012684
Lima S., Neves P., Antunes M. M., Pillinger M., Ignatyev N., Valente A. A., (2009). Conversion of mono/di/polysaccharides into furan compounds using 1-alkyl-3-methylimidazolium ionic liquids. Appl. Catal. A 363, 93–99. 10.1016/j.apcata.2009.04.049
Lukamto D. H., Wang P., Loh T.-P., (2013). Catalytic conversion of inert carbohydrates into platform chemical 5-hydroxymethylfurfural using arylboronic acids. Asian J. Org. Chem. 2, 947–951. 10.1002/ajoc.201300185
Mellmer M. A., Sanpitakseree C., Demir B., Ma K., Elliott W. A., Bai P., et al. (2019). Effects of chloride ions in acid-catalyzed biomass dehydration reactions in polar aprotic solvents. Nat. Commun. 10:1132. 10.1038/s41467-019-09090-430850608
Mittal A., Black S. K., Vinzant T. B., O'Brien M., Tucker M. P., Johnson D. K., (2017). Production of furfural from process-relevant biomass-derived pentoses in a biphasic reaction system. ACS Sustain. Chem. Eng. 5, 5694–5701. 10.1021/acssuschemeng.7b00215
Moreau C., Finiels A., Vanoye L., (2006). Dehydration of fructose and sucrose into 5-hydroxymethylfurfural in the presence of 1-H-3-methyl imidazolium chloride acting both as solvent and catalyst. J. Mol. Catal. A 253, 165–169. 10.1016/j.molcata.2006.03.046
Paiva A., Craveiro R., Aroso I., Martins M., Reis R. L., Duarte A. R. C., (2014). Natural deep eutectic solvents - solvents for the 21st century. ACS Sustain. Chem. Eng. 2, 1063–1071. 10.1021/sc500096j
Pappin B., Kiefel M. J., Houston T. A., (2012). Boron-Carbohydrate Interactions, in Carbohydrates – Comprehensive Studies on Glycobiology and Glycotechnology, ed Chang C. F., (Rijeka: IntechOpen), 37–54. 10.5772/50630
Peters J. A., (2014). Interactions between boric acid derivatives and saccharides in aqueous media: structures and stabilities of resulting esters. Coord. Chem. Rev. 268, 1–22. 10.1016/j.ccr.2014.01.016
Pizer R., Selzer R., (1984). The boric acid/lactic acid system. Equilibria and reaction mechanism. Inorg. Chem. 23, 3023–3026. 10.1021/ic00187a024
Qi X., Watanabe M., Aida T. M., Smith R. L., (2008). Catalytic dehydration of fructose into 5-hydroxymethylfurfural by ion-exchange resin in mixed-aqueous system by microwave heating. Green Chem. 10, 799–805. 10.1039/b801641k
Queen A., (1977). The kinetics of the reaction of boric acid with salicylic acid. Can. J. Chem. 55, 3035–3039. 10.1139/v77-421
Radošević K., Cvjetko Bubalo M., Gaurina Srček V., Grgas D., Landeka Dragičević T., Redovniković R. I., (2015). Evaluation of toxicity and biodegradability of choline chloride based deep eutectic solvents. Ecotoxicol. Environ. Saf. 112, 46–53. 10.1016/j.ecoenv.2014.09.03425463852
Rebstöcková M., Bartušek M., (1977). Reactions of boric acid with oxalic, glycolic and tartaric acids. Collect. Czech. Chem. Commun. 42, 627–636. 10.1135/cccc19770627
Rodriguez Rodriguez N., Van Den Bruinhorst A., Kollau L. J. B. M., Kroon M. C., Binnemans K., (2019). Degradation of deep-eutectic solvents based on choline chloride and carboxylic acids [research-article]. ACS Sustain. Chem. Eng. 7, 11521–11528. 10.1021/acssuschemeng.9b01378
Rosatella A. A., Simeonov S. P., Frade R. F. M., Afonso C. A. M., (2011). 5-Hydroxymethylfurfural (HMF) as a building block platform: biological properties, synthesis and synthetic applications. Green Chem. 13, 754–793. 10.1039/c0gc00401d
Simeonov S. P., Coelho J. A. S., Afonso C. A. M., (2012). An integrated approach for the production and isolation of 5-hydroxymethylfurfural from carbohydrates. ChemSusChem, 5, 1388–1391. 10.1002/cssc.20120023622740298
Stahlberg T., Rodriguez-Rodriguez S., Fristrup P., Riisager A., (2011). Metal free dehydration of glucose to 5HMF in ionic liquid with boric acid as a promoter. Chem. A Eur. J. 7, 1456–1464. 10.1002/chem.20100217121268148
Thuy Pham T. P., Cho C. W., Yun Y. S., (2010). Environmental fate and toxicity of ionic liquids: a review. Water Res. 44, 352–372. 10.1016/j.watres.2009.09.03019854462
Van Osch D. J. G. P., Kollau L. J. B. M., Van Den Bruinhorst A., Asikainen S., Rocha M. A. A., Kroon M. C., (2017). Ionic liquids and deep eutectic solvents for lignocellulosic biomass fractionation. Phys. Chem. Chem. Phys. 19, 2636–2665. 10.1039/C6CP07499E28071778
Van Putten R. J., Soetedjo J. N. M., Pidko E. A., Van Der Waal J. C., Hensen E. J. M., De Jong E., et al. (2013a). Dehydration of different ketoses and aldoses to 5-hydroxymethylfurfural. ChemSusChem 6, 1681–1687. 10.1002/cssc.20130034524039165
Van Putten R. J., van der Waal J. C., de Jong E., Heeres H. J., (2017). Reactivity studies in water on the acid-catalysed dehydration of psicose compared to other ketohexoses into 5-hydroxymethylfurfural. Carbohydr. Res. 446–447, 1–6. 10.1016/j.carres.2017.04.00928458081
Van Putten R. J., Van Der Waal J. C., De Jong E., Rasrendra C. B., Heeres H. J., De Vries J. G., (2013b). Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chem. Rev. 113, 1499–1597. 10.1021/cr300182k23394139
Watanabe M., Aizawa Y., Iida T., Aida T. M., Levy C., Sue K., et al. (2005). Glucose reactions with acid and base catalysts in hot compressed water at 473 K. Carbohydr. Res. 340, 1925–1930. 10.1016/j.carres.2005.06.01716023627
Yang G., Pidko E. A., Hensen E. J. M., (2012). Mechanism of bronsted acid-catalyzed conversion of carbohydrates. J. Catal. 295, 122–132. 10.1016/j.jcat.2012.08.002
Zhang Q., De Oliveira Vigier K., Royer S., Jérôme F., (2012). Deep eutectic solvents: syntheses, properties and applications. Chem. Soc. Rev. 41, 7108–7146. 10.1039/c2cs35178a22806597