Santos, E. C. S.; Institute of Livestock and Glassland Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
Appeltant, Ruth ; Université de Liège - ULiège > Dpt. de gestion vétérinaire des Ressources Animales (DRA) > GIGA-R : Génomique animale
Dang-Nguyen, T. Q.; Division of Animal Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
Noguchi, J.; Division of Animal Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
Kaneko, H.; Division of Animal Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
Kikuchi, K.; Division of Animal Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
Somfai, T.; Institute of Livestock and Glassland Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
Language :
English
Title :
The effect of resveratrol on the developmental competence of porcine oocytes vitrified at germinal vesicle stage
Anderson, M. E. (1985). Determination of glutathione and glutathione disulfide in biological samples. In A. Meister (Ed.), Glutamate, Glutathione and related compounds (pp. 548–555). New York, NY: Academic Press. https://doi.org/10.1016/S0076-6879(85)13073-9
Appeltant, R., Somfai, T., Santos, E. C. S., Dang-Nguyen, T. Q., Nagai, T., & Kikuchi, K. (2017). Effects of vitrification of cumulus-enclosed porcine oocytes at the germinal vesicle stage on cumulus expansion, nuclear progression and cytoplasmic maturation. Reproduction, Fertility, and Development. in press. https://doi.org/10.1071/RD16386
Chung, S., Yao, H., Caito, S., Hwang, J. W., Arunachalam, G., & Rahman, I. (2010). Regulation of SIRT1 in cellular functions: Role of polyphenols. Archives of Biochemistry and Biophysics, 501, 79–90. https://doi.org/10.1016/j.abb.2010.05.003
Dang-Nguyen, T. Q., Kikuchi, K., Somfai, T., Ozawa, M., Nakai, M., Maedomari, N., … Nagai, T. (2010). Evaluation of developmental competence of in vitro produced porcine embryos based on the timing, pattern and evenness of the first cleavage and onset of the second cleavage. The Journal of Reproduction and Development, 56, 593–600. https://doi.org/10.1262/jrd.10-038M
Giaretta, E., Spinaci, M., Bucci, D., Tamanini, C., & Galeati, G. (2013). Effects of resveratrol on vitrified porcine oocytes. Oxidative Medicine and Cellular Longevity, 2013, 920257. https://doi.org/10.1155/2013/920257
Gilchrist, R. B., Luciano, A. M., Richani, D., Zeng, H. T., Wang, X., Vos, M. D., … Thompson, J. G. (2016). Oocyte maturation and quality: Role of cyclic nucleotides. Reproduction, 152, R143–R157. https://doi.org/10.1530/REP-15-0606
Grupen, C. G. (2014). The evolution of porcine embryo in vitro production. Theriogenology, 81, 24–37. https://doi.org/10.1016/j.theriogenology.2013.09.022
Grupen, C. G., & Armstrong, D. T. (2010). Relationship between cumulus cell apoptosis, progesterone production and porcine oocyte developmental competence: Temporal effects of follicular fluid during IVM. Reproduction, Fertility, and Development, 22, 1100–1109. https://doi.org/10.1071/RD09307
Guérin, P., El Mouatassim, S., & Ménézo, Y. (2001). Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings. Human Reproduction Update, 7, 175–189. https://doi.org/10.1093/humupd/7.2.175
Itami, N., Shirasuna, K., Kuwayama, T., & Iwata, H. (2015). Resveratrol improves the quality of pig oocytes derived from early antral follicles through sirtuin 1 activation. Theriogenology, 83, 1360–1367. https://doi.org/10.1016/j.theriogenology.2015.01.029
Karja, N., Kikuchi, K., Fahrudin, M., Ozawa, M., Somfai, T., Ohnuma, K., … Nagai, T. (2006). Development to the blastocyst stage, the oxidative state, and the quality of early developmental stage of porcine embryos cultured in alteration of glucose concentrations in vitro under different oxygen tensions. Reproductive Biology and Endocrinology, 4, 54. https://doi.org/10.1186/1477-7827-4-54
Kwak, S. S., Cheong, S. A., Jeon, Y., Lee, E., Choi, K. C., Jeung, E. B., & Hyun, S. H. (2012). The effects of resveratrol on porcine oocyte in vitro maturation and subsequent embryonic development after parthenogenetic activation and in vitro fertilization. Theriogenology, 78, 86–101. https://doi.org/10.1016/j.theriogenology.2012.01.024
Ma, R., Zhang, Y., Zhang, L., Han, J., & Rui, R. (2015). Sirt1 protects pig oocyte against in vitro aging. Animal Science Journal, 86, 826–382. https://doi.org/10.1111/asj.12360
Petters, R. M., & Wells, K. D. (1993). Culture of pig embryos. Journal of Reproduction and Fertility Supplement, 48, 61–73.
Rajaei, F., Karja, N. W., Agung, B., Wongsrikeao, P., Taniguchi, M., Murakami, M., … Otoi, T. (2005). Analysis of DNA fragmentation of porcine embryos exposed to cryoprotectants. Reproduction in Domestic Animals, 40, 429–432. https://doi.org/10.1111/rda.2005.40.issue-5
Sato, D., Itami, N., Tasaki, H., Takeo, S., Kuwayama, T., & Iwata, H. (2014). Relationship between mitochondrial DNA copy number and SIRT1 expression in porcine oocytes. PLoS ONE, 9, e94488. https://doi.org/10.1371/journal.pone.0094488
Somfai, T., Kikuchi, K., & Nagai, T. (2012). Factors affecting cryopreservation of porcine oocytes. The Journal of Reproduction and Development, 58, 17–24. https://doi.org/10.1262/jrd.11-140N
Somfai, T., Men, N. T., Junko, N., Kaneko, H., Kashiwazaki, N., & Kikuchi, K. (2015). Optimization of cryoprotectant treatment for the vitrification of immature cumulus-enclosed porcine oocytes: Comparison of sugars, combinations of permeating cryoprotectants and equilibration regimens. The Journal of Reproduction and Development, 61, 571–579. https://doi.org/10.1262/jrd.2015-089
Somfai, T., Noguchi, J., Kaneko, H., Nakai, M., Ozawa, M., Kashiwazaki, N., … Kikuchi, K. (2010). Production of good-quality porcine blastocysts by in vitro fertilization of follicular oocytes vitrified at the germinal vesicle stage. Theriogenology, 73, 147–156. https://doi.org/10.1016/j.theriogenology.2009.08.008
Somfai, T., Yoshioka, K., Tanihara, F., Kaneko, H., Noguchi, J., Kashiwazaki, N., … Kikuchi, K. (2014). Generation of live piglets from cryopreserved oocytes for the first time using a defined system for in vitro embryo production. PLoS ONE, 9, e97731. https://doi.org/10.1371/journal.pone.0097731
Tiwari, M., Prasad, S., Tripathi, A., Pandey, A. N., Ali, I., Singh, A. K., … Chaube, S. K. (2015). Apoptosis in mammalian oocytes: A review. Apoptosis, 20, 1019–1025. https://doi.org/10.1007/s10495-015-1136-y
Vallorani, C., Spinaci, M., Bucci, D., Porcu, E., Tananini, C., & Galleati, G. (2012). Pig oocyte vitrification by cryotop method and activation of the apoptotic cascade. Animal Reproduction Science, 135, 68–74. https://doi.org/10.1016/j.anireprosci.2012.08.020
Woelders, H., Windig, J., & Hiemstra, S. J. (2012). How developments in cryobiology, reproductive technologies and conservation genomics could shape gene banking strategies for (farm) animals. Reproduction in Domestic Animals, 47(Suppl 4), 264–273. https://doi.org/10.1111/rda.2012.47.issue-s4
Yoshioka, K., Suzuki, C., & Onishi, A. (2008). Defined system for in vitro production of porcine embryos using a single basic medium. The Journal of Reproduction and Development, 54, 208–213. https://doi.org/10.1262/jrd.20001
Yoshioka, K., Suzuki, C., Tanaka, A., Anas, I. M., & Iwamura, S. (2002). Birth of piglets derived from porcine zygotes cultured in a chemically defined medium. Biology of Reproduction, 66, 112–119. https://doi.org/10.1095/biolreprod66.1.112