Sobac, Benjamin; Université Libre de Bruxelles - ULB
Maquet, Laurent; Université de Liège - ULiège
Duchesne, Alexis; Université Lille
Machrafi, Hatim ; Université de Liège - ULiège > In silico medecine-Thermodynamics of Irreversible Processes
Rednikov, Alexey; Université Libre de Bruxelles - ULB
Dauby, Pierre ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Thermodynamique des phénomènes irréversibles
Colinet, Pierre; Université Libre de Bruxelles - ULB
Dorbolo, Stéphane ; Université de Liège - ULiège > Département de physique > Physique statistique
Language :
English
Title :
Self-induced flows enhance the levitation of Leidenfrost drops on liquid baths
Publication date :
2020
Journal title :
Physical Review Fluids
ISSN :
2469-9918
eISSN :
2469-990X
Publisher :
American Physical Society, College Park, United States - Maryland
V. K. Dhir, Boiling heat transfer, Annu. Rev. Fluid Mech. 30, 365 (1998). ARVFA3 0066-4189 10.1146/annurev.fluid.30.1.365
H. Kim, B. Truong, J. Buongiorno, and L.-W. Hu, On the effect of surface roughness height, wettability, and nanoporosity on Leidenfrost phenomena, Appl. Phys. Lett. 98, 083121 (2011). APPLAB 0003-6951 10.1063/1.3560060
H. Linke, B. J. Alemán, L. D. Melling, M. J. Taormina, M. J. Francis, C. C. Dow-Hygelund, V. Narayanan, R. P. Taylor, and A. Stout, Self-Propelled Leidenfrost Droplets, Phys. Rev. Lett. 96, 154502 (2006). PRLTAO 0031-9007 10.1103/PhysRevLett.96.154502
G. Lagubeau, M. Le Merrer, C. Clanet, and D. Quéré, Leidenfrost on a ratchet, Nat. Phys. 7, 395 (2011). 10.1038/nphys1925
Á. G. Marín, D. Arnaldo del Cerro, G. R. B. E. Römer, B. Pathiraj, A. Huis in 't Veld, and D. Lohse, Capillary droplets on Leidenfrost micro-ratchets, Phys. Fluids 24, 122001 (2012). PHFLE6 1070-6631 10.1063/1.4768813
B. Sobac, A. Rednikov, S. Dorbolo, and P. Colinet, Self-propelled Leidenfrost drops on a thermal gradient: A theoretical study, Phys. Fluids 29, 082101 (2017). PHFLE6 1070-6631 10.1063/1.4990840
I. U. Vakarelski, J. O. Marston, D. Y. C. Chan, and S. T. Thoroddsen, Drag Reduction by Leidenfrost Vapor Layers, Phys. Rev. Lett. 106, 214501 (2011). PRLTAO 0031-9007 10.1103/PhysRevLett.106.214501
I. U. Vakarelski, N. A. Patankar, J. O. Marston, D. Y. C. Chan, and S. T. Thoroddsen, Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces, Nature (London) 489, 274 (2012). NATUAS 0028-0836 10.1038/nature11418
A. Hashmi, Y. Xu, B. Coder, P. A. Osborne, J. Spafford, G. E. Michael, G. Yu, and J. Xu, Leidenfrost levitation: Beyond droplets, Sci. Rep. 2, 797 (2012). 2045-2322 10.1038/srep00797
M. Elbahri, D. Paretkar, K. Hirmas, S. Jebril, and R. Adelung, Anti-lotus effect for nanostructuring at the Leidenfrost temperature, Adv. Mater. 19, 1262 (2007). ADVMEW 0935-9648 10.1002/adma.200601694
R. Abdelaziz, D. Disci-Zayed, M. K. Hedayati, J.-H. Pöhls, A. U. Zillohu, B. Erkartal, V. S. K. Chakravadhanula, V. Duppel, L. Kienle, and M. Elbahri, Green chemistry and nanofabrication in a levitated Leidenfrost drop, Nat. Commun. 4, 2400 (2013). 2041-1723 10.1038/ncomms3400
G. G. Wells, R. Ledesma-Aguilar, G. McHale, and K. Sefiane, A sublimation heat engine, Nat. Commun. 6, 6390 (2015). 2041-1723 10.1038/ncomms7390
A. Bouillant, T. Mouterde, P. Bourrianne, A. Lagarde, C. Clanet, and D. Quéré, Leidenfrost wheels, Nat. Phys. 14, 1188 (2018). 1745-2473 10.1038/s41567-018-0275-9
S. Lyu, V. Mathai, Y. Wang, B. Sobac, P. Colinet, D. Lohse, and C. Sun, Final fate of a Leidenfrost droplet: Explosion or takeoff, Sci. Adv. 5, eaav8081 (2019). 2375-2548 10.1126/sciadv.aav8081
P. Bourrianne, C. Lv, and D. Quéré, The cold Leidenfrost regime, Sci. Adv. 5, eaaw0304 (2019). 2375-2548 10.1126/sciadv.aaw0304
A. Snezhko, E. B. Jacob, and I. S Aranson, Pulsating-gliding transition in the dynamics of levitating liquid nitrogen droplets, New J. Phys. 10, 043034 (2008). NJOPFM 1367-2630 10.1088/1367-2630/10/4/043034
M. Le Merrer, C. Clanet, D. Quéré, É. Raphaël, and F. Chevy, Wave drag on floating bodies, Proc. Natl. Acad. Sci. USA 108, 15064 (2011). PNASA6 0027-8424 10.1073/pnas.1106662108
L. Maquet, B. Sobac, B. Darbois-Texier, A. Duchesne, M. Brandenbourger, A. Rednikov, P. Colinet, and S. Dorbolo, Leidenfrost drops on a heated liquid pool, Phys. Rev. Fluids 1, 053902 (2016). 2469-990X 10.1103/PhysRevFluids.1.053902
A.-B. Wang, C.-H. Lin, and C.-C. Chen, The critical temperature of dry impact for tiny droplet impinging on a heated surface, Phys. Fluids 12, 1622 (2000). PHFLE6 1070-6631 10.1063/1.870413
J. D. Bernardin and I. Mudawar, The Leidenfrost point: Experimental study and assessment of existing models, J. Heat Transfer 121, 894 (1999). JHTRAO 0022-1481 10.1115/1.2826080
M. A. J. van Limbeek, B. Sobac, A. Rednikov, P. Colinet, and J. H. Snoeijer, Asymptotic theory for a Leidenfrost drop on a liquid pool, J. Fluid Mech. 863, 1157 (2019). JFLSA7 0022-1120 10.1017/jfm.2018.1025
B. Sobac, A. Rednikov, S. Dorbolo, and P. Colinet, Leidenfrost effect: Accurate drop shape modeling and refined scaling laws, Phys. Rev. E 90, 053011 (2014). PLEEE8 1539-3755 10.1103/PhysRevE.90.053011
H. Kim, Floating phenomenon of a water drop on the surface of liquid nitrogen, J. Korean Phys. Soc. 49, L1335 (2006).
Y. S. Song, D. Adler, F. Xu, E. Kayaalp, A. Nureddin, R. M. Anchan, R. L. Maas, and U. Demirci, Vitrification and levitation of a liquid droplet on liquid nitrogen, Proc. Natl. Acad. Sci. USA 107, 4596 (2010). PNASA6 0027-8424 10.1073/pnas.0914059107
M. Adda-Bedia, S. Kumar, F. Lechenault, S. Moulinet, M. Schillaci, and D. Vella, Inverse Leidenfrost effect: Levitating drops on liquid nitrogen, Langmuir 32, 4179 (2016). LANGD5 0743-7463 10.1021/acs.langmuir.6b00574
A. Gauthier, C. Diddens, R. Proville, D. Lohse, and D. van der Meer, Self-propulsion of inverse Leidenfrost drops on a cryogenic bath, Proc. Natl. Acad. Sci. USA 116, 1174 (2019). PNASA6 0027-8424 10.1073/pnas.1812288116
A. Gauthier, D. van der Meer, J. H. Snoeijer, and G. Lajoinie, Capillary orbits, Nat. Commun. 10, 3947 (2019). 2041-1723 10.1038/s41467-019-11850-1
K. C. D. Hickman, Floating drops and boules, Nature (London) 201, 985 (1964). NATUAS 0028-0836 10.1038/201985a0
K. C. D. Hickman, J. Maa, A. Davidhazy, and O. Mady, Features floating drops and liquid boules-a further look, Ind. Eng. Chem. 59, 18 (1967). IECHAD 0019-7866 10.1021/ie50694a008
A.-L. Biance, C. Clanet, and D. Quéré, Leidenfrost drops, Phys. Fluids 15, 1632 (2003). PHFLE6 1070-6631 10.1063/1.1572161
M. A. J. van Limbeek, M. H. Klein Schaarsberg, B. Sobac, A. Rednikov, C. Sun, P. Colinet, and D. Lohse, Leidenfrost drops cooling surfaces: Theory and interferometric measurement, J. Fluid Mech. 827, 614 (2017). JFLSA7 0022-1120 10.1017/jfm.2017.425
P. Dell'Aversana, J. R. Banavar, and J. Koplik, Suppression of coalescence by shear and temperature gradients, Phys. Fluids 8, 15 (1996). PHFLE6 1070-6631 10.1063/1.868811
P. Dell'Aversana and G. P. Neitzel, When liquids stay dry, Phys. Today 51 (1), 38 (1998). PHTOAD 0031-9228 10.1063/1.882133
See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevFluids.5.062701 for the additional parametric study.
S. D. Janssens, S. Koizumi, and E. Fried, Behavior of self-propelled acetone droplets in a Leidenfrost state on liquid substrates, Phys. Fluids 29, 032103 (2017). PHFLE6 1070-6631 10.1063/1.4977442