Alphatic polyesters; Reactive extrusion; Ring opening polymerization
Abstract :
[en] Due to their biodegradability and biocompatibility, aliphatic polyesters received a considerable attention for a
wide range of applications, in particular in medical and pharmaceutical fields. Aliphatic polyesters are usually
synthesized by ring opening polymerization in a batch mode. In this work, a reactive extrusion polymerization
was optimized to synthesise in a continuous way poly-L-lactide, poly-D,L-lactide, and poly-D,L-lactide-co-glycolide
50:50. A lab scale co-rotating twin screw extruder adapted for pharmaceutical products and medical devices was
used after optimizing the geometry of screws and barrel. Polymerization was conducted in the presence of tin(II)
2-ethylhexanoate as catalyst and a monohydroxylated polyethylene glycol as initiator. The optimized procedure
allowed producing high molecular weight polyesters (Mn in the range [15−100 kDa]) in a controlled way on a
time scale of some minutes, with a capacity of at least 100 g/h and with monomer residues lower than 5%.
Comparison of macromolecular features and thermal properties of the resulting polyesters of different Mn with
those prepared in a batch process allowed concluding to the similarity of these materials. Reactive extrusion
polymerization represents therefore a very attractive methodology to produce in a continuous, rapid and robust
way aliphatic polyesters suitable for a wide range of pharmaceutical, medical or nowadays applications.
Research Center/Unit :
CEIB - Centre Interfacultaire des Biomatériaux - ULiège
Disciplines :
Materials science & engineering
Author, co-author :
Regibeau, Nicolas ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Biochimie et physiologie générales, et biochimie humaine
Tilkin, Rémi ; Université de Liège - ULiège > Department of Chemical Engineering > Nanomaterials, Catalysis, Electrochemistry
Lombart, François
Heinrichs, Benoît ; Université de Liège - ULiège > Department of Chemical Engineering > Génie chimique - Nanomatériaux et interfaces
Grandfils, Christian ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Biochimie et physiologie générales, et biochimie humaine
Language :
English
Title :
Synthesis of medical grade PLLA, PDLLA, and PLGA by a reactive extrusion polymerization
Publication date :
07 May 2020
Journal title :
Materials Today Communications
eISSN :
2352-4928
Publisher :
Elsevier, Oxford, United Kingdom
Volume :
24
Pages :
101208
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Suzuki, S., Ikada, Y., Medical applications. Auras, R., Lim, L.-T., Selke, S.E.M., Tsuji, H., (eds.) Poly(Lactic Acid) Synth. Struct. Porperties, Process. Appl., 2010, John Wiley & Sons, Inc., 445–455, 10.1002/9780470649848.ch27.
Masutani, K., Kimura, Y., PLA synthesis. From the monomer to the polymer. Jiménez, A., Peltzer, M.A., Ruseckaite, R.A., (eds.) Poly(Lactic Acid)Science Technol. Process. Prop. Addit. Appl., 2015, Royal Society of Chemistry – Polymer Chemistry Series, 3–35, 10.1039/9781782624806-00001.
Nampoothiri, K.M., Nair, N.R., John, R.P., An overview of the recent developments in polylactide (PLA) research. Bioresour. Technol. 101 (2010), 8493–8501, 10.1016/j.biortech.2010.05.092.
Erbetta, C.D.C., Alves, R.J., Resende, J.M., de S. Freitas, R.F., de Sousa, R.G., Synthesis and characterization of poly(D,L-lactide-co-glycolide) copolymer. J. Biomater. Nanobiotechnol. 3 (2012), 208–225, 10.4236/jbnb.2012.32027.
Bendix, D., Chemical synthesis of polylactide and its copolymers for medical applications. Polym. Degrad. Stab. 59 (1998), 129–135, 10.1016/S0141-3910(97)00149-3.
Farah, S., Anderson, D.G., Langer, R., Physical and mechanical properties of PLA, and their functions in widespread applications – a comprehensive review. Adv. Drug Deliv. Rev. 107 (2016), 367–392, 10.1016/j.addr.2016.06.012.
Ramot, Y., Haim-Zada, M., Domb, A.J., Nyska, A., Biocompatibility and safety of PLA and its copolymers. Adv. Drug Deliv. Rev. 107 (2016), 153–162, 10.1016/j.addr.2016.03.012.
Gentile, P., Chiono, V., Carmagnola, I., Hatton, P.V., An overview of poly(lactic-co-glycolic) Acid (PLGA)-based biomaterials for bone tissue engineering. Int. J. Mol. Sci. 15 (2014), 3640–3659, 10.3390/ijms15033640.
Raquez, J.M., Degée, P., Nabar, Y., Narayan, R., Dubois, P., Biodegradable materials by reactive extrusion: from catalyzed polymerization to functionalization and blend compatibilization. Comptes Rendus Chim. 9 (2006), 1370–1379, 10.1016/j.crci.2006.09.004.
Jacobsen, S., Fritz, H.-G., Degée, P., Dubois, P., Jérôme, R., Continuous reactive extrusion polymerization of L-lactide – an engineering view. Macromolar Symp. 273 (2000), 261–273, 10.1002/1521-3900(200003)153:1<261::AID-MASY261>3.0.CO;2-9.
Södergard, A., Stolt, M., Industrial production of High molecular weight poly(lactic acid). Auras, R., Lim, L.-T., Selke, S.E.M., Tsuji, H., (eds.) Poly(Lactic Acid) Synth. Struct. Porperties, Process. Appl., 2010, John Wiley & Sons, Inc., 27–41, 10.1002/9780470649848 ch3.
Raquez, J.-M., Ramy-Ratiarison, R., Murariu, M., Dubois, P., reactive extrusion of PLA-based materials: from synthesis to reactive melt-blending. Jiménez, A., Peltzer, M.A., Ruseckaite, R.A., (eds.) Poly(Lactic Acid)Science Technol. Process. Prop. Addit. Appl., 2015, Royal Society of Chemistry – Polymer Chemistry Series, 101–122, 10.1039/9781782624806-00099.
Jacobsen, S., Fritz, H.G., Degée, P., Dubois, P., Jérôme, R.J., Single-step reactive extrusion of PLLA in a corotating twin-screw extruder promoted by 2-ethylhexanoic acid tin(II) salt and triphenylphosphine. Polymer (Guildf). 41 (2000), 3395–3403, 10.1016/S0032-3861(99)00507-8.
Gallos, A., Fontaine, G., Bourbigot, S., Reactive extrusion of stereocomplexed poly-L, d -Lactides: processing, characterization, and properties. Macromol. Mater. Eng. 298 (2013), 1016–1023, 10.1002/mame.201200271.
Hopmann, C., Adamy, M., Cohnen, A., Introduction to reactive extrusion. Beyer, G., Hopmann, C., (eds.) React. Extrus., 2017, Wiley-VCH, 3–9, 10.1002/9783527801541.ch1.
FDA, FDA - Code of Federal Regulations Title. 2018, 21 (accessed January 19, 2020) https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=175.105&SearchTerm=ethylhexanoate.
Kricheldorf, H.R., Kreiser-Saunders, I., Boettcher, C., Polylactones, 31, Sn(II)octoate-initiated polymerization of L-lactide: a mechanistic study. Polymer (Guildf). 36 (1995), 1253–1259, 10.1016/0032-3861(95)93928-F.
Bourbigot, S., Fontaine, G., Gallos, A., Bellayer, S., Reactive extrusion of PLA and of PLA/carbon nanotubes nanocomposite: processing, characterization and flame retardancy. Polym. Adv. Technol. 22 (2011), 30–37, 10.1002/pat.1715.
Dubey, S.P., Abhyankar, H.A., Marchante, V., Brighton, J.L., Blackburn, K., Temple, C., Bergmann, B., Trinh, G., David, C., Modelling and validation of synthesis of poly lactic acid using an alternative energy source through a continuous reactive extrusion process. Polymers (Basel)., 8, 2016, 10.3390/polym8040164.
K. Jansson, J. Koskinen, J.-F. Selin, Process for the polymerization of lactide, WO1998036008A1, 2001. https://patents.google.com/patent/WO1998036008A1.
Z. Li, P. Ouyang, H. Huang, Method of making polylactide acid and its products, US8241545B2, 2011. https://patents.google.com/patent/US8241545/3Den.
D. Reichert, F.D. Klingler, H. Schwall, A. Christmann, B. Buchholz, Continuous process for the preparation of resorable polyesters and the use thereof, US5378801A, 1995. https://patents.google.com/patent/US5378801A/en.
Groot, W., Van Krieken, J., Sliekersl, O., De Vos, S., Production and purification of lactic acid and lactide. Auras, R., Lim, L.-T., Selke, S.E.M., Tsuji, H., (eds.) Poly(Lactic Acid) Synth. Struct. Porperties, Process. Appl., 2010, John Wiley & Sons, Inc., 3–18, 10.1002/9780470649848.ch1.
Lechner, F., The Co-rotating twin-screw extruder for reactive extrusion. Beyer, G., Hopmann, C., (eds.) React. Extrus., 2017, Wiley-VCH, 13–35, 10.1002/9783527801541.ch2.
Gautam, A., Choudhury, G.S., Screw configuration effects on residence time distribution and mixing in twin-screw extruder during extrusion of rice flour. J. Food Process Eng. 22 (1999), 263–285, 10.1111/j.1745-4530.1999.tb00485.x.
H.-G. Fritz, S. Jacobsen, R. Jérôme, P. Degée, P. Dubois, Aliphatic polyesters and/or copolyesters and a process for the production thereof, US6166169A, 2000. https://patents.google.com/patent/US6166169A/en.
Nijenhuis, A.J., Grijpma, D.W., Pennings, A.J., Lewis acid catalyzed polymerization of L-Lactide. Kinetics and mechanism of the bulk polymerization. Macromolecules. 25 (1992), 6419–6424, 10.1021/ma00050a006.
Bassi, M.B., Padias, A.B., Hall, H.K., The hydrolytic polymerization of ε-caprolactone by triphenyltin acetate. Polym. Bull. Berl. (Berl) 24 (1990), 227–232, 10.1007/BF00297322.
Sedush, N.G., Strelkov, Y.Y., Chvalun, S.N., Kinetic investigation of the polymerization of D,L-lactide and glycolide via differential scanning calorimetry. Polym. Sci. Ser. B. 56 (2014), 35–40, 10.1134/s1560090414010102.
Dorgan, J.R., Rheology of poly(lactic acid). Auras, R., Lim, L.-T., Selke, S.E.M., Tsuji, H., (eds.) Poly(Lactic Acid) Synth. Struct. Porperties, Process. Appl., 2010, John Wiley & Sons, Inc., 125–139, 10.1002/9780470649848.ch10.
Dorgan, J.R., Williams, J.S., Lewis, D.N., Melt rheology of poly(lactic acid): entanglement and chain architecture effects. J. Rheol. (N. Y. N. Y). 43 (2002), 1141–1155, 10.1122/1.551041.
Khodabakhshi, K., Ehsani, M., Development and applications of sustainable polylactic acid parts. Thakur, V.K., Thakur, M.K., (eds.) Handb. Sustain. Polym. Process. Anf Appl., 2016, Pan Stanford Publisher, 10.1201/b19948 pp. 429–424.
Garlotta, D., A literature review of poly(lactic acid). J. Polym. Environ., 9, 2002 doi:1566-2543/01/0400-0063/0.
Li, F.J., Zhang, S.D., Liang, J.Z., Wang, J.Z., Effect of polyethylene glycol on the crystallization and impact properties of polylactide-based blends. Polym. Adv. Technol. 26 (2015), 465–475, 10.1002/pat.3475.
Kulinski, Z., Piorkowska, E., Crystallization, structure and properties of plasticized poly(L-lactide). Polymer (Guildf). 46 (2005), 10290–10300, 10.1016/j.polymer.2005.07.101.
Bijarimi, M., Ahmad, S., Rasid, R., Khushairi, M.A., Zakir, M., Poly(lactic acid)/Poly(ethylene glycol) blends: mechanical, thermal and morphological properties. Int. Adv. Appl. Phys. Mater. Sci. Congr. Exhib., 2016, 10.1063/1.4945957.
Hassouna, F., Raquez, J., Addiego, F., Dubois, P., Toniazzo, V., Ruch, D., New approach on the development of plasticized polylactide (PLA): grafting of poly(ethylene glycol) (PEG) via reactive extrusion. Eur. Polym. J. 47 (2011), 2134–2144, 10.1016/j.eurpolymj.2011.08.001.
Feng, L., Zhang, B., Bian, X., Li, G., Chen, Z., Chen, X., Thermal properties of Polylactides with different stereoisomers of lactides used as comonomers. Macromolecules. 50 (2017), 6064–6073, 10.1021/acs.macromol.7b00818.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.