Majumdar, G.; Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
Yadav, G.; Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
Hamaide, J.; Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
Coussement, L.; Biobix: Laboratory of Bioinformatics and Computational Genomics, Department of Data Analysis and Mathematical Modelling, Ghent University, Ghent, Belgium
De Meyer, Tim
Verhoye, M.; Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
Vanden Berghe, W.; Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
Van Der Linden, A.; Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
Balthazart, Jacques ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Département des sciences biomédicales et précliniques
Language :
English
Title :
Molecular correlates of hypothalamic development in songbird ontogeny in comparison with the telencephalon
Xie Y, Dorsky RI. Development of the hypothalamus: Conservation, modification and innovation. Development. 2017;144:1588-1599.
Burbridge S, Stewart I, Placzek M. Development of the neuroendocrine hypothalamus. Compr Physiol. 2016;6:623-643.
Kuenzel WJ, VanTienhoven A. Nomenclature and location of avian hypothalamic nuclei and associated circumventricular organs. J Comp Neurol. 1982;206:293-313.
Breazile JE, Kuenzel WJ. Systema nervosum centrale. In: Baumel JJ, King AS, Breazile JE, Evans HE, Vanden Berge JC, eds. Handbook of Avian Anatomy: Nomina anatomicum avium. Cambridge, MA: Nuttall Ornithological Club; 1993:493-554.
Markakis EA. Development of the neuroendocrine hypothalamus. Front Neuroendocrinol. 2002;23:257-291.
Simerly RB, Swanson LW. The organization of neural inputs to the medial preoptic nucleus of the rat. J Comp Neurol. 1986;246:312-342.
Leng G. The Heart of the Brain: The Hypothalamus and Its Hormones. Cambridge, MA: MIT Press; 2018.
Plant TM, Zelenik AJ. Knobil and Neill's Physiology of Reproduction. Amsterdam: Elsevier; 2015.
Pfaff D, Joels M. Hormones, Brain and Behavior. Amsterdam: Elsevier; 2017.
Balthazart J, Arnold AP, Adkins-Regan E. Sexual differentiation of brain and behavior in birds. In: Pfaff D, Joels M, eds. Hormones, Brain and Behavior. Vol. 5. 3rd ed. New York, NY: Academic Press; 2017: 185–224.
Balthazart J. Steroid metabolism in the brain: From bird watching to molecular biology, a personal journey. Horm Behav. 2017;93:137-150.
London SE, Schlinger BA. Steroidogenic enzymes along the ventricular proliferative zone in the developing songbird brain. J Comp Neurol. 2007;502:507-521.
Schlinger BA, Soma KK, London SE. Neurosteroids and brain sexual differentiation. Trends Neurosci. 2001;24:429-431.
Adkins-Regan E, Ascenzi M. Social and sexual behaviour of male and female zebra finches treated with oestradiol during the nestling period. Anim Behav. 1987;35:1100-1112.
Adkins-Regan E, Ascenzi M. Sexual differentiation of behavior in the zebra finch: Effect of early gonadectomy or androgen treatment. Horm Behav. 1990;24:114-127.
Adkins-Regan E, Mansukhani V, Seiwert C, Thompson R. Sexual differentiation of brain and behavior in the zebra finch: Critical periods for effects of early estrogen treatment. J Neurobiol. 1994;25:865-877.
Balthazart J, De Clerck A, Foidart A. Behavioral demasculinization of female quail is induced by estrogens: Studies with the new aromatase inhibitor, R76713. Horm Behav. 1992;26:179-203.
Tobet SA, Fox TO. Sex differences in neuronal morphology influenced hormonally throughout life: Handbook of behavioral neurobiology. In: Gerall AA, Moltz H, Ward IL, eds. Sexual Differentiation. Vol 11. New York, NY: Plenum Press; 1992:41-83.
Balthazart J, Ball GF. Topography in the preoptic region: Differential regulation of appetitive and consummatory male sexual behaviors. Front Neuroendocrinol. 2007;28:161-178.
De Vries GJ, Simerly RB.Anatomy, development, and function of sexually dimorphic neural circuits in the mammalian brain. In: Pfaff DW, Arnold AP, Etgen AM, Fahrbach SE, Rubin RT, eds. Hormones, Brain and Behavior. Vol 4. San Diego, CA: Academic Press; 2002: 137-191.
Arnold AP, Jordan CL. Hormonal organization of neural circuits. In: Martini L, Ganong WE, eds. Frontiers in Neuroendocrinology. Vol 10. New York, NY: Raven Press; 1988:185-214.
Nottebohm F. The road we travelled: Discovery, choreography, and significance of brain replaceable neurons. Ann N Y Acad Sci. 2004;1016:628-658.
Williams H. Birdsong and singing behavior. Ann N Y Acad Sci. 2004;1016:1-30.
Schlinger BA, Brenowitz EA. Neural and hormonal control of birdsong. In: Pfaff DW, Joels M, eds. Hormones, Brain and Behaviour. Vol. 2. Oxford: Academic Press; 2017:255-290.
MacDougall-Shackleton SA, Ball GF. Comparative studies of sex differences in the song-control system of songbirds. Trends Neurosci. 1999;22:432-436.
Gurney ME, Konishi M. Hormone-induced sexual differentiation of brain and behavior in zebra finches. Science. 1980;208:1380-1383.
Pohl-Apel G, Sossinka R. Hormonal determination of song capacity in females of the zebra finch. Z Tierpsychol. 1984;64:330-336.
Simpson HB, Vicario DS. Early estrogen treatment alone causes female zebra finches to produce learned, male-like vocalizations. J Neurobiol. 1991;22:755-776.
Nottebohm F, Arnold AP. Sexual dimorphism in vocal control areas of the songbird brain. Science. 1976;194:211-213.
Nottebohm F, Stokes TM, Leonard CM. Central control of song in the canary, Serinus canarius. J Comp Neurol. 1976;165:457-486.
Brainard MS, Doupe AJ. What songbirds teach us about learning. Nature: Insight Reviews. 2002;417:351-358.
Shaughnessy DW, Hyson RL, Bertram R, Wu W, Johnson F. Female zebra finches do not sing yet share neural pathways necessary for singing in males. J Comp Neurol. 2018;527:843-855.
Mathews GA, Arnold AP. Antiestrogens fail to prevent the masculine ontogeny of the zebra finch song system. Gen Comp Endocrinol. 1990;80:48-58.
Wade J, Arnold AP. Post-hatching inhibition of aromatase activity does not alter sexual differentiation of the zebra finch song system. Brain Res. 1994;639:347-350.
Wade J, Arnold AP. Functional testicular tissue does not masculinize development of the zebra finch song system. Proc Natl Acad Sci USA. 1996;93:5264-5268.
Agate RJ, Grisham W, Wade J, et al. Neural, not gonadal, origin of brain sex differences in a gynandromorphic finch. PNAS. 2003;100:4873-4878.
Pröve E.Hormonal correlates of behavioural development in male zebra finches. In: Balthazart J, Pröve E, Gilles R, eds. Hormones and Behaviour in Higher Vertebrates. Springer Verlag, Berlin; 1983:368-374.
Hamaide J, Lukacova K, Van Audekerke J, Verhoye M, Kubikova L, Van der Linden A. Neuroplasticity in the cerebello-thalamo-basal ganglia pathway: A longitudinal in vivo MRI study in male songbirds. NeuroImage. 2018;181:190-202.
Abraham U, Albrecht U, Brandstatter R. Hypothalamic circadian organization in birds. II. Clock gene expression. Chronobiol Int. 2003;20:657-669.
Perfito N, Jeong SY, Silverin B, Calisi RM, Bentley GE, Hau M. Anticipating spring: wild populations of great tits (Parus major) differ in expression of key genes for photoperiodic time measurement. PLoS ONE. 2012;7:e34997.
Majumdar G, Rani S, Kumar V. Hypothalamic gene switches control transitions between seasonal life history states in a night-migratory photoperiodic songbird. Mol Cell Endocrinol. 2015;399:110-121.
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402-408.
Nakao N, Ono H, Yamamura T, et al. Thyrotrophin in the pars tuberalis triggers photoperiodic response. Nature. 2008;452:317-U311.
Ernst DK, Bentley GE. Neural and neuroendocrine processing of a non-photic cue in an opportunistically breeding songbird. J Exp. Bio. 2016;219:783-789.
Mishra I, Agarwal N, Rani S, Kumar V. Scotostimulation of reproductive neural pathways and gonadal maturation are not correlated with hypothalamic expression of deiodinases in subtropical spotted munia. J Neuroendocrinol. 2018;30:e12627.
Nixdorf-Bergweiler BE. Divergent and parallel development in volume sizes of telencephalic song nuclei in male and female zebra finches. J Comp Neurol. 1996;375:445-456.
Bottjer SW, Glaessner SL, Arnold AP. Ontogeny of brain nuclei controlling song learning and behavior in zebra finches. J Neurosci. 1985;5:1556-1562.
Cornez G, Jonckers E, Ter Haar SM, Van der Linden A, Cornil CA, Balthazart J. Timing of perineuronal net development in the zebra finch song control system correlates with developmental song learning. Proc Biol Sci. 2018;285:20180849. https://doi.org/10.1098/rspb.2018.0849
Palkovits M. Isolated removal of hypothalamic or other brain nuclei of the rat. Brain Res. 1973;59:449-450.
McNabb FM. Avian thyroid development and adaptive plasticity. Gen Comp Endocrinol. 2006;147:93-101.
Kinne A, Schulein R, Krause G. Primary and secondary thyroid hormone transporters. Thyroid Res. 2011;4(Suppl 1):S7.
Van Herck SL, Geysens S, Delbaere J, Darras VM. Regulators of thyroid hormone availability and action in embryonic chicken brain development. Gen Comp Endocrinol. 2013;190:96-104.
Bernal J. Thyroid hormone receptors in brain development and function. Nat Clin Pract Endocrinol Metab. 2007;3:249-259.
Raymaekers SR, Verbeure W, Ter Haar SM, Cornil CA, Balthazart J, Darras VM. A dynamic, sex-specific expression pattern of genes regulating thyroid hormone action in the developing zebra finch song control system. Gen Comp Endocrinol. 2017;240:91-102.
Hernandez A, Morte B, Belinchon MM, Ceballos A, Bernal J. Critical role of types 2 and 3 deiodinases in the negative regulation of gene expression by T(3)in the mouse cerebral cortex. Endocrinology. 2012;153:2919-2928.
Balthazart J, Foidart A, Surlemont C, Harada N, Naftolin F. Neuroanatomical specificity in the autoregulation of aromatase-immunoreactive neurons by androgens and estrogens: an immunocytochemical study. Brain Res. 1992;574:280-290.
Gahr M. Hormone-dependent neural plasticity in the juvenile and adult song system: what makes a successful male? Ann N Y Acad Sci. 2004;1016:684-703.
Kim YH, Perlman WR, Arnold AP. Expression of androgen receptor mRNA in zebra finch song system: developmental regulation by estrogen. J Comp Neurol. 2004;469:535-547.
Metzdorf R, Gahr M, Fusani L. Distribution of aromatase, estrogen receptor, and androgen receptor mRNA in the forebrain of songbirds and nonsongbirds. J Comp Neurol. 1999;407:115-129.
Chao A, Paon A, Remage-Healey L. Dynamic variation in forebrain estradiol levels during song learning. Dev Neurobiol. 2015;75:271-286.
Vockel A, Pröve E, Balthazart J. Sex- and age-related differences in the activity of testosterone-metabolizing enzymes in microdissected nuclei of the zebra finch brain. Brain Res. 1990;511:291-302.
Vockel A, Pröve E, Balthazart J. Effects of castration and testosterone treatment on the activity of testosterone-metabolizing enzymes in the brain of male and female zebra finches. J. Neurobiol. 1990;21:808-825.
Schlinger BA, Arnold AP. Plasma sex steroids and tissue aromatization in hatchling zebra finches: Implications for the sexual differentiation of singing behavior. Endocrinology. 1992;130:289-299.
Shen P, Schlinger BA, Campagnoni AT, Arnold AP. An atlas of aromatase mRNA expression in the zebra finch brain. J Comp Neurol. 1995;360:172-184.
Saldanha CJ, Tuerk MJ, Kim YH, Fernandes AO, Arnold AP, Schlinger BA. Distribution and regulation of telencephalic aromatase expression in the zebra finch revealed with a specific antibody. J. Comp. Neurol. 2000;423:619-630.
Peterson RS, Yarram L, Schlinger BA, Saldanha CJ. Aromatase is pre-synaptic and sexually dimorphic in the adult zebra finch brain. Proc Biol Sci. 2005;272:2089-2096.
Shinkai T, Roth GS. Mechanisms of age-related changes in gonadotropin-releasing hormone receptor messenger ribonucleic acid content in the anterior pituitary of male rats. Exp Gerontol. 1999;34:267-273.
Ubuka T, Bentley GE, Tsutsui K. Neuroendocrine regulation of gonadotropin secretion in seasonally breeding birds. Front Neurosci. 2013;7:38.
Job C, Eberwine J. Localization and translation of mRNA in dendrites and axons. Nat Rev Neurosci. 2001;2:889-898.
Sisk CL, Foster DL. The neural basis of puberty and adolescence. Nat Neurosci. 2004;7:1040-1047.
Nicholls TJ, Golsmith AR, Dawson A. Photorefractoriness in birds and comparison with mammals. Physiol Rev. 1988;68:133-176.
Yoshimura T. Thyroid hormone and seasonal regulation of reproduction. Front Neuroendocrinol. 2013;34:157-166.
Rhinn M, Dierich A, Le Meur M, Ang S. Cell autonomous and non-cell autonomous functions of Otx2 in patterning the rostral brain. Development. 1999;126:4295-4304.
Felling RJ, Song H. Epigenetic mechanisms of neuroplasticity and the implications for stroke recovery. Exp Neurol. 2015;268:37-45.
Johnen H, Gonzalez-Silva L, Carramolino L, Flores JM, Torres M, Salvador JM. Gadd45g is essential for primary sex determination, male fertility and testis development. PLoS ONE. 2013;8:e58751.
Hayase S, Wang H, Ohgushi E, et al. Vocal practice regulates singing activity-dependent genes underlying age-independent vocal learning in songbirds. PLoS Biol. 2018;16:e2006537.
Islam MM, Zhang CL. TLX: a master regulator for neural stem cell maintenance and neurogenesis. Biochim Biophys Acta. 2015;1849:210-216.
Kokoeva MV, Yin H, Flier JS. Neurogenesis in the hypothalamus of adult mice: potential role in energy balance. Science. 2005;310:679-683.
Kokoeva MV, Yin H, Flier JS. Evidence for constitutive neural cell proliferation in the adult murine hypothalamus. J Comp Neurol. 2007;505:209-220.
Migaud M, Batailler M, Segura S, Duittoz A, Franceschini I, Pillon D. Emerging new sites for adult neurogenesis in the mammalian brain: a comparative study between the hypothalamus and the classical neurogenic zones. Eur J Neurosci. 2010;32:2042-2052.
Cao J, Wenberg K, Cheng MF. Lesion induced new neuron incorporation in the adult hypothalamus of the avian brain. Brain Res. 2002;943:80-92.
Chen G, Bonder EM, Cheng MF. Lesion-induced neurogenesis in the hypothalamus is involved in behavioral recovery in adult ring doves. J Neurobiol. 2006;66:537-551.
Bardet SM, Mouriec K, Balthazart J. Birth of neural progenitors during the embryonic period of sexual differentiation in the Japanese quail brain. Journal of Comparative Neurology. 2012;520:4226-4253.
Mouriec K, Balthazart J. Peripubertal proliferation of progenitor cells in the preoptic area of Japanese quail (Coturnix japonica). Brain Res. 2013;1516:20-32.