Kim, K. T.; Centre for Bioengineering, University of Canterbury, Christchurch, New Zealand
Morton, S.; Centre for Bioengineering, University of Canterbury, Christchurch, New Zealand
Howe, S.; Centre for Bioengineering, University of Canterbury, Christchurch, New Zealand
Chiew, Y. S.; School of Engineering, Monash University, Bandar Sunway, Malaysia
Knopp, J. L.; Centre for Bioengineering, University of Canterbury, Christchurch, New Zealand
Docherty, P.; Centre for Bioengineering, University of Canterbury, Christchurch, New Zealand
Pretty, C.; Centre for Bioengineering, University of Canterbury, Christchurch, New Zealand
Desaive, Thomas ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Thermodynamique des phénomènes irréversibles
Benyo, B.; Department of Control Engineering and Information, Budapest University of Technology and Economics, Budapest, Hungary
Szlavecz, A.; Department of Control Engineering and Information, Budapest University of Technology and Economics, Budapest, Hungary
Moeller, K.; Institute of Technical Medicine (ITeM), HFU Furtwangen University, Villingen-Schwenningen, Germany
Shaw, G. M.; Department of Intensive Care, Christchurch Hospital, Christchurch, New Zealand
Chase, J. G.; Centre for Bioengineering, University of Canterbury, Christchurch, New Zealand
Girard TD, Bernard GR. Mechanical ventilation in ARDS: a state-of-the-art review. Chest. 2007;131:921-9. https://doi.org/10.1378/chest.06-1515.
ARDS Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Eng J Med. 2000;342:1301-8. https://doi.org/10.1056/NEJM200005043421801.
Amato MB, Barbas CS, Medeiros DM, Magaldi RB, Schettino GP, Lorenzi-Filho G, et al. Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med. 1998;338:347-54. https://doi.org/10.1056/NEJM199802053380602.
Brower RG, Lanken PN, MacIntyre N, Matthay MA, Morris A, Ancukiewicz M, et al. Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med. 2015;373:327-36. https://doi.org/10.1056/NEJMoa1511939.
Villar J, Kacmarek RM, Perez-Mendez L, Aguirre-Jaime A. A high positive end-expiratory pressure, low tidal volume ventilatory strategy improves outcome in persistent acute respiratory distress syndrome: a randomized, controlled trial. Crit Care Med. 2006;34:1311-8. https://doi.org/10.1097/01.CCM.0000215598.84885.01.
Meade MO, Cook DJ, Guyatt GH, Slutsky AS, Arabi YM, Cooper DJ, et al. Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA. 2008;299:637-45. https://doi.org/10.1001/jama.299.6.637.
Mercat A, Richard JM, Vielle B. Positive end-expiratory pressure setting in adults with acute lung injury, vol. 299; 2016.
Oba Y, Thameem DM, Zaza T. High levels of PEEP may improve survival in acute respiratory distress syndrome: a meta-analysis. Respir Med. 2009;103:1174-81. https://doi.org/10.1016/j.rmed.2009.02.008.
Briel M, Meade M, Mercat A, Brower RG, Talmor D, Walter SD, et al. Higher vs lower positive end-expiratory pressure in patients with acute lung injury and acute respiratory distress syndrome. J Am Med Assoc. 2010;303:865-73. https://doi.org/10.1001/jama.2010.218.
Hickling KG, Henderson SJ, Jackson R. Low mortality associated with low volume pressure limited ventilation with permissive hypercapnia in severe adult respiratory distress syndrome. Intensive Care Med. 1990;16:372-7. https://doi.org/10.1007/BF01735174.
Gattinoni L, Carlesso E, Brazzi L, Caironi P. Positive end-expiratory pressure. Curr Opin Crit Care. 2010;16:39-44. https://doi.org/10.1097/MCC.0b013e3283354723.
Guerin C. The preventive role of higher PEEP in treating severely hypoxemic ARDS. Minerva Anestesiol. 2011;77:835-45.
Thammanomai A, Hamakawa H, Bartolák-Suki E, Suki B. Combined effects of ventilation mode and positive end-expiratory pressure on mechanics, gas exchange and the epithelium in mice with acute lung injury. PLoS One. 2013;8:1-10. https://doi.org/10.1371/journal.pone.0053934.
Borges JB, Okamoto VN, Matos GFJ, Caramez MPR, Arantes PR, Barros F, et al. Reversibility of lung collapse and hypoxemia in early acute respiratory distress syndrome. Am J Respir Crit Care Med. 2006;174:268-78. https://doi.org/10.1164/rccm.200506-976OC.
de Matos GFJ, Stanzani F, Passos RH, Fontana MF, Albaladejo R, Caserta RE, et al. How large is the lung recruitability in early acute respiratory distress syndrome: a prospective case series of patients monitored by computed tomography. Crit Care. 2012;16:R4. https://doi.org/10.1186/cc10602.
Malbouisson LM, Muller JC, Constantin JM, Lu Q, Puybasset L, Rouby JJ, et al. Computed tomography assessment of positive end-expiratory pressure-induced alveolar recruitment in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2001;163:1444-50.
Rose L, Presneil JJ, Johnston L, Nelson S, Cade JF. Ventilation and weaning practices in Australia and New Zealand. Anaesth Intensive Care. 2009;37:99-107. https://doi.org/10.1016/j.aucc.2007.12.003.
Carvalho A, Jandre FC, Pino AV, Bozza FA, Salluh J, Rodrigues R, et al. Positive end-expiratory pressure at minimal respiratory elastance represents the best compromise between mechanical stress and lung aeration in oleic acid induced lung injury. Crit Care. 2007;11:R86. https://doi.org/10.1186/cc6093.
Suarez-Sipmann F, Böhm SH, Tusman G, Pesch T, Thamm O, Reissmann H, et al. Use of dynamic compliance for open lung positive end-expiratory pressure titration in an experimental study. Crit Care Med. 2007;35:214-21. https://doi.org/10.1097/01.CCM.0000251131.40301.E2.
Lambermont B, Ghuysen A, Janssen N, Morimont P, Hartstein G, Gerard P, et al. Comparison of functional residual capacity and static compliance of the respiratory system during a positive end-expiratory pressure (PEEP) ramp procedure in an experimental model of acute respiratory distress syndrome. Crit Care. 2008;12:R91. https://doi.org/10.1186/cc6961.
Suter PM, Fairley HB, Isenberg MD. Optimum end-expiratory airway pressure in patients with acute pulmonary failure. N Engl J Med. 1975;292:284-9. https://doi.org/10.1056/NEJM197502062920604.
Pintado M-C, de Pablo R, Trascasa M, Milicua J-M, Rogero S, Daguerre M, et al. Individualized PEEP setting in subjects with ARDS: a randomized controlled pilot study. Respir Care. 2013;58:1416-23. https://doi.org/10.4187/respcare.02068.
Chiew YSW, Pretty CG, Shaw GM, Chiew YSW, Lambermont B, Desaive T, et al. Feasibility of titrating PEEP to minimum elastance for mechanically ventilated patients. Pilot Feasibility Stud. 2015;1:1-10. https://doi.org/10.1186/s40814-015-0006-2.
Chiew YS, Chase JG, Shaw GM, Sundaresan A, Desaive T. Model-based PEEP optimisation in mechanical ventilation. Biomed Eng Online. 2011;10:111. https://doi.org/10.1186/1475-925X-10-111.
Szlavecz A, Chiew YS, Redmond D, Beatson A, Glassenbury D, Corbett S, et al. The clinical utilisation of respiratory elastance software (CURE Soft): a bedside software for real-time respiratory mechanics monitoring and mechanical ventilation management. Biomed Eng Online. 2014;13:140. https://doi.org/10.1186/1475-925X-13-140.
Villar J, Pérez-Méndez L, Blanco J, Añón JM, Blanch L, Belda J, et al. A universal definition of ARDS: the PaO2/FiO2 ratio under a standard ventilatory setting - a prospective, multicenter validation study. Intensive Care Med. 2013;39:583-92. https://doi.org/10.1007/s00134-012-2803-x.
Brochard L, Costa ELV, Schoenfeld DA, Ph D, Stewart TE, Briel M, et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med. 2015;372:747-56. https://doi.org/10.1056/NEJMsa1410639.
Brochard L, Slutsky A, Pesenti A. Mechanical ventilation to minimize progression of lung injury in acute respiratory failure. Am J Respir Crit Care Med. 2017;195:438-42. https://doi.org/10.1164/rccm.201605-1081CP.
Brochard L. Ventilation-induced lung injury exists in spontaneously breathing patients with acute respiratory failure: Yes. Intensive Care Med. 2017;43:250-2. https://doi.org/10.1007/s00134-016-4645-4.
Redmond D, Chiew YS, Van Drunen E, Shaw GM, Chase JG. A minimal algorithm for a minimal recruitment model-model estimation of alveoli opening pressure of an acute respiratory distress syndrome (ARDS) lung. Biomed Signal Process Control. 2014;14:1-8. https://doi.org/10.1016/j.bspc.2014.05.006.
Thille AW, Rodriguez P, Cabello B, Lellouche F, Brochard L. Patient-ventilator asynchrony during assisted mechanical ventilation. Intensive Care Med. 2006;32:1515-22. https://doi.org/10.1007/s00134-006-0301-8.
Carlucci A, Pisani L, Ceriana P, Malovini A, Nava S. Patient-ventilator asynchronies: may the respiratory mechanics play a role? Crit Care. 2013;17:R54. https://doi.org/10.1186/cc12580.
De Wit M, Pedram S, Best AM, Epstein SK. Observational study of patient-ventilator asynchrony and relationship to sedation level ∗. J Crit Care. 2009;24:74-80. https://doi.org/10.1016/j.jcrc.2008.08.011.
Murray JF, Matthay MA, Luce JM, Flick MR. An expanded definition of the adult respiratory distress syndrome. Am Rev Respir Dis. 1988;138(3):720-3. https://www.ncbi.nlm.nih.gov/pubmed/3202424.
IDRIX, VeraCrypt c2013-2020. Available from: https://www.veracrypt.fr/en/Downloads.html. [Cited Dec 2019].
Morton SE, Chiew YS, Pretty C, Moltchanova E, Scarrott C, Redmond D, et al. effective sample size estimation for a mechanical ventilation trial through monte-carlo simulation: length of mechanical ventilation and ventilator free days. Math Biosci. 2017;284:21-31. https://doi.org/10.1016/j.mbs.2016.06.001.
Fleming TR, Harrington DP, O'Brien PC. Designs for group sequential tests. Control Clin Trials. 1984;5:348-61. https://doi.org/10.1016/S0197-2456(84)80014-8.
Lucangelo U, Bernabè F, Blanch L. Lung mechanics at the bedside: make it simple. Curr Opin Crit Care. 2007;13:64-72. https://doi.org/10.1097/MCC.0b013e32801162df.
Chiew YS, Pretty C, Docherty PD, Lambermont B, Shaw GM, Desaive T, et al. Time-varying respiratory system elastance: a physiological model for patients who are spontaneously breathing. PLoS One. 2015;10:1-13. https://doi.org/10.1371/journal.pone.0114847.
Fan E, Wilcox ME, Brower RG, Stewart TE, Mehta S, Lapinsky SE, et al. Recruitment maneuvers for acute lung injury. Am J Respir Crit Care Med. 2008;178:1156-63. https://doi.org/10.1164/rccm.200802-335OC.
Pelosi P, de Abreu MG, Rocco PRMM. New and conventional strategies for lung recruitment in acute respiratory distress syndrome. Crit Care. 2010;14. https://doi.org/10.1186/cc8851.
Bersten AD, Edibam C, Hunt T, Moran J, The Australian and New Zealand Intensive Care Society Clinical Trials Group. Incidence and mortality of acute lung injury and the acute respiratory distress syndrome in three Australian States. Am J Respir Crit Care Med. 2002;165:443-8. https://doi.org/10.1164/rccm.2101124.
Rubenfeld GD, Caldwell E, Peabody E, Weaver J, Martin DP, et al. Incidence and outcomes of acute lung injury. 2012:1685-93. https://doi.org/10.1056/NEJMc053159.
Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L, et al. Report of the American-European consensus conference on ARDS: definitions, mechanisms, relevant outcomes and clinical trial coordination. Intensive Care Med. 1994;20:225-32. https://doi.org/10.1007/BF01704707.
Estenssoro E, Dubin A, Laffaire E, Canales HS, Sáenz G, Moseinco M, et al. Impact of positive end-expiratory pressure on the definition of acute respiratory distress syndrome. Intensive Care Med. 2003;29:1936-42. https://doi.org/10.1007/s00134-003-1943-4.