Murphy, L.; Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand
Davidson, S.; Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
Chase, J. G.; Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand
Knopp, J. L.; Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand
Zhou, T.; Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand
Desaive, Thomas ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Thermodynamique des phénomènes irréversibles
Language :
English
Title :
Patient-Specific Monitoring and Trend Analysis of Model-Based Markers of Fluid Responsiveness in Sepsis: A Proof-of-Concept Animal Study
Bagshaw, S. M., P. D. Brophy, D. Cruz, and C. Ronco. Fluid balance as a biomarker: impact of fluid overload on outcome in critically ill patients with acute kidney injury. Crit. care 12(4):169, 2008. 10.1186/cc6948.
Byrne, L., and F. Haren. Fluid resuscitation in human sepsis: time to rewrite history? Ann. Intensive Care 7(1):4, 2017. 10.1186/s13613-016-0231-8.
Cavallaro, F., C. Sandroni, and M. Antonelli. Functional hemodynamic monitoring and dynamic indices of fluid responsiveness. Miner. Anestesiol. 74(4):123–135, 2008.
Cecconi, M., D. De Backer, M. Antonelli, R. Beale, J. Bakker, C. Hofer, R. Jaeschke, A. Mebazaa, M. R. Pinsky, J. L. Teboul, et al. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European society of intensive care medicine. Intensive Care Med. 40(12):1795–1815, 2014. 10.1007/s00134-014-3525-z.
Chase, J. G., A. J. Le Compte, J.-C. Preiser, G. M. Shaw, S. Penning, and T. Desaive. Physiological modeling, tight glycemic control, and the icu clinician: what are models and how can they affect practice? Ann. Intensive Care 1(1):11, 2011. 10.1186/2110-5820-1-11.
Davidson, S., C. Pretty, A. Pironet, T. Desaive, N. Janssen, B. Lambermont, P. Morimont, and J. G. Chase. Minimally invasive estimation of ventricular dead space volume through use of frank-starling curves. PLoS ONE 12(4):e0176302, 2017. 10.1371/journal.pone.0176302.
Davidson, S., C. Pretty, A. Pironet, S. Kamoi, J. Balmer, T. Desaive, and J. G. Chase. Minimally invasive, patient specific, beat-by-beat estimation of left ventricular time varying elastance. BioMed. Eng. Online 16 (1):42, 2017. ISSN 1475-925X. 10.1186/s12938-017-0338-7.
Davidson, S. M., D. O. Kannangara, C. G. Pretty, S. Kamoi, T. Desaive, and J. G. Chase. A novel approach for deriving a patient specific beat-to-beat estimate of the cardiac driver function. IFAC Pap. Online 48(20):348–353, 2015. 10.1016/j.ifacol.2015.10.164.
Davidson, A. M., C. Pretty, S. Kamoi, J. Balmer, T. Desaive, and J. G. Chase. Real-time, minimally invasive, beat-to-beat estimation of end-systolic volume using a modified end-systolic pressure–volume relation. IFAC Pap. Online 50(1):5456–5461, 2017. 10.1016/j.ifacol.2017.08.1082.
Dellinger, R. P., M. M. Levy, A. Rhodes, D. Annane, H. Gerlach, S. M. Opal, J. E. Sevransky, C. L. Sprung, I. S. Douglas, R. Jaeschke, et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med. 39(2):165–228, 2013. 10.1007/S00134-012-2769-8.
Dickson, J. L., C. A. Gunn, and J. G. Chase. Humans are horribly variable. Int. J. Clin. Med. Imaging 1(2):1–1000142, 2014.
Dickson, J. L., C. A. Gunn, and J. G. Chase. Clinical & medical imaging. Int. J. 1(2):1000142, 2014.
Drosatos, K., A. Lymperopoulos, P. J. Kennel, N. Pollak, P. C. Schulze, and I. J. Goldberg. Pathophysiology of sepsis-related cardiac dysfunction: driven by inflammation, energy mismanagement, or both? Curr. Heart Fail. Rep. 12(2):130–140, 2015. 10.1007/s11897-014-0247-z.
Guarracino, F., R. Baldassarri, and M. R. Pinsky. Ventriculo-arterial decoupling in acutely altered hemodynamic states. Crit. Care 17(2):213, 2013. 10.1186/cc12522.
Hariyanto, H., C. Q. Yahya, M. Widiastuti, P. Wibowo, and O. E. Tampubolon. Fluids and sepsis: changing the paradigm of fluid therapy: a case report. J Med. Case Rep. 11(1):30, 2017. 10.1186/s13256-016-1191-1.
Howell, M. D., and A. M. Davis. Management of sepsis and septic shock. Jama, 317(8):847–848, 2017. 10.1001/jama.2017.0131.
Kamoi, S., C. Pretty, J. Balmer, S. Davidson, A. Pironet, T. Desaive, G. M. Shaw, and J. G. Chase. Improved pressure contour analysis for estimating cardiac stroke volume using pulse wave velocity measurement. Biomed. Eng. Online 16(1):51, 2017. 10.1186/s12938-017-0341-z.
Kelm, D. J., J. T. Perrin, R. Cartin-Ceba, O. Gajic, L. Schenck, and C. C. Kennedy. Fluid overload in patients with severe sepsis and septic shock treated with early-goal directed therapy is associated with increased acute need for fluid-related medical interventions and hospital death. Shock 43(1):68, 2015. 10.1001/jama.2016.0288.
Kumar, A., J. E. Parrillo, and A. Kumar, et al. Clinical review: myocardial depression in sepsis and septic shock. Crit. Care 6(6):500, 2002. 10.1186/cc1822.
Maas, J. J., M. R. Pinsky, L. P. Aarts, and J. R. Jansen. Bedside assessment of total systemic vascular compliance, stressed volume, and cardiac function curves in intensive care unit patients. Anesth. Analg. 115(4):880–887, 2012. 10.1213/ANE.0b013e31825fb01d.
Magder, S., and B. De Varennes. Clinical death and the measurement of stressed vascular volume. Crit. Care Med. 26(6):1061–1064, 1998.
Malbrain, M. L. N. G., N. Van Regenmortel, B. Saugel, B. De Tavernier, P.-J. Van Gaal, O. Joannes-Boyau, J.-L. Teboul, T. W. Rice, M. Mythen, and X. Monnet. Principles of fluid management and stewardship in septic shock: it is time to consider the four d’s and the four phases of fluid therapy. Ann. Intensive Care 8(1):66, 2018. 10.1186/s13613-018-0402-x.
Marik, P., and R. Bellomo. A rational approach to fluid therapy in sepsis. Br. J. Anaesth. 116(3):339–349, 2015. 10.1093/bja/aev349.
Merx, M. W., and C. Weber. Sepsis and the heart. Circulation 116(7):793–802, 2007. 10.1161/circulationaha.106.678359.
Monnet, X., P. E. Marik, and J.-L. Teboul. Prediction of fluid responsiveness: an update. Ann. Intensive Care 6(1):111, 2016. 10.1186/s13613-016-0216-7.
Mouncey, P. R., T. M. Osborn, G. S. Power, D. A. Harrison, M. Z. Sadique, R. D. Grieve, R. Jahan, S. E. Harvey, D. Bell, J. F. Bion, et al. Trial of early, goal-directed resuscitation for septic shock. N. Engl. J. Med. 372(14):1301–1311, 2015. 10.1056/NEJMoa1500896.
Pironet, A., P. C. Dauby, J. G. Chase, S. Kamoi, N. Janssen, P. Morimont, B. Lambermont, and T. Desaive. Model-based stressed blood volume is an index of fluid responsiveness. IFAC Pap. Online 48(20):291–296, 2015. 10.1016/j.ifacol.2015.10.154.
Pironet, A., P. C. Dauby, S. Paeme, S. Kosta, J. G. Chase, and T. Desaive. Simulation of left atrial function using a multi-scale model of the cardiovascular system. PLoS ONE 8(6):e65146, 2013. 10.1371/journal.pone.0065146.
Pironet, A., T. Desaive, J. G. Chase, P. Morimont, and P. C. Dauby. Model-based computation of total stressed blood volume from a preload reduction manoeuvre. Math. Biosci. 265:28–39, 2015. ISSN 0025-5564. 10.1016/j.mbs.2015.03.015.
Pironet, A., T. Desaive, P. C. Dauby, J. G. Chase, and P. D. Docherty. Parameter identification methods in a model of the cardiovascular system. IFAC Pap. Online 48(20):366–371, 2015. 10.1016/j.ifacol.2015.10.167.
Rothe, C. F. Mean circulatory filling pressure: its meaning and measurement. J. Appl. Physiol. 74(2):499–509, 1993. 10.1152/jappl.1993.74.2.499.
Seymour, C. W., V. X. Liu, T. J. Iwashyna, F. M. Brunkhorst, T. D. Rea, A. Scherag, G. Rubenfeld, J. M. Kahn, M. Shankar-Hari, M. Singer, et al. Assessment of clinical criteria for sepsis: for the third international consensus definitions for sepsis and septic shock (sepsis-3). Jama 315(8):762–774, 2016. 10.1001/jama.2016.0288.
Silva, J. M., A. M. R. R. de Oliveira, F. A. M. Nogueira, P. M. M. Vianna, M. C. P. Filho, L. F. Dias, V. P. L. Maia, C. de Souza Neucamp, C. P. Amendola, M. J. C. Carmona, et al. The effect of excess fluid balance on the mortality rate of surgical patients: a multicenter prospective study. Crit. Care 17(6):R288, 2013. 10.1186/cc13151.
Smith, B. W., J. G. Chase, R. I. Nokes, G. M. Shaw, and T. David. Velocity profile method for time varying resistance in minimal cardiovascular system models. Phys. Med. Biol. 48(20):3375, 2003. 10.1088/0031-9155/48/20/008/meta.
Starfinger, C., C. E. Hann, J. G. Chase, T. Desaive, A. Ghuysen, and G. M. Shaw. Model-based cardiac diagnosis of pulmonary embolism. Comput. Methods Programs Biomed. 87(1):46–60, 2007. 10.1016/j.cmpb.2007.03.010.
Stevenson, D., J. Revie, J. G. Chase, C. E. Hann, G. M. Shaw, B. Lambermont, A. Ghuysen, P. Kolh, and T. Desaive. Algorithmic processing of pressure waveforms to facilitate estimation of cardiac elastance. Biomed. Eng. Online 11(1):28, 2012. 10.1186/1475-925X-11-28.
Stevenson, D., J. Revie, J. G. Chase, C. E. Hann, G. M. Shaw, B. Lambermont, A. Ghuysen, P. Kolh, and T. Desaive. Beat-to-beat estimation of the continuous left and right cardiac elastance from metrics commonly available in clinical settings. Biomed. Eng. Online 11(1):73, 2012. 10.1186/1475-925X-11-73.
Suga, H., K. Sagawa, and A. A. Shoukas. Load independence of the instantaneous pressure–volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circ. Res. 32(3):314–322, 1973.
Vincent, J.-L., and M. R. Pinsky. We should avoid the term “fluid overload”, 2018.
Zhou, T., J. Knopp, C. J. D. McKinlay, G. D. Gamble, J. E. Harding, J. G. Chase, CHYLD Study Group, et al. Glycaemic state analysis from continuous glucose monitoring measurements in infants. IFAC Pap. Online 51(27):276–281, 2018. 10.1016/j.ifacol.2018.11.629.