Javier Torrent, Míriam ; Institut de Neurociencies, Department de Bioquimica i Biologia Molecular, Facultat de Medicina, Centro de Investigacio ́ n Biome ́ dica en Red Enfermedades Neurodegenerativas (CIBERNED), Universitat Autonoma de Barcelona, Barcelona, Spain
Marco, Sergi; Institut de Neurociencies, Department de Bioquimica i Biologia Molecular, Facultat de Medicina, Centro de Investigacio ́ n Biome ́ dica en Red Enfermedades Neurodegenerativas (CIBERNED), Universitat Autonoma de Barcelona, Barcelona, Spain
Rocandio, Daniel; Institut de Recerca Biomedica de Lleida, Universitat de Lleida, Lleida, Spain
Pons-Vizcarra, Maria; Institut de Neurociencies, Department de Bioquimica i Biologia Molecular, Facultat de Medicina, Centro de Investigacio ́ n Biome ́ dica en Red Enfermedades Neurodegenerativas (CIBERNED), Universitat Autonoma de Barcelona, Barcelona, Spain
Janes, Peter W; Department of Biochemistry and Molecular Biology, Monash University, Victoria, Australia
Lackmann, Martin; Department of Biochemistry and Molecular Biology, Monash University, Victoria, Australia
Egea, Joaquim; Institut de Recerca Biomedica de Lleida, Universitat de Lleida, Lleida, Spain
Saura, Carlos A; Institut de Neurociencies, Department de Bioquimica i Biologia Molecular, Facultat de Medicina, Centro de Investigacio ́ n Biome ́ dica en Red Enfermedades Neurodegenerativas (CIBERNED), Universitat Autonoma de Barcelona, Barcelona, Spain
Language :
English
Title :
Presenilin/g-secretase-dependent EphA3 processing mediates axon elongation through non-muscle myosin IIA
Ahmed, Z., Berry, M., Logan, A., ROCK inhibition promotes adult retinal ganglion cell neurite outgrowth only in the presence of growth promoting factors (2009) Molecular and Cellular Neuroscience, 42, pp. 128-133. , https://doi.org/10.1016/j.mcn.2009.06.005, 19524675
Bai, G., Chivatakarn, O., Bonanomi, D., Lettieri, K., Franco, L., Xia, C., Stein, E., Pfaff, S.L., Presenilin-dependent receptor processing is required for axon guidance (2011) Cell, 144, pp. 106-118. , https://doi.org/10.1016/j.cell.2010.11.053
Beach, J.R., Hussey, G.S., Miller, T.E., Chaudhury, A., Patel, P., Monslow, J., Zheng, Q., Egelhoff, T.T., Myosin II isoform switching mediates invasiveness after TGF--induced epithelial-mesenchymal transition (2011) PNAS, 108, pp. 17991-17996. , https://doi.org/10.1073/pnas.1106499108
Boyd, A.W., Bartlett, P.F., Lackmann, M., Therapeutic targeting of EPH receptors and their ligands (2014) Nature Reviews Drug Discovery, 13, pp. 39-62. , https://doi.org/10.1038/nrd4175
Breckenridge, M.T., Dulyaninova, N.G., Egelhoff, T.T., Multiple regulatory steps control mammalian nonmuscle myosin II assembly in live cells (2009) Molecular Biology of the Cell, 20, pp. 338-347. , https://doi.org/10.1091/mbc.e08-04-0372, 18971378
da Silva, J.S., Medina, M., Zuliani, C., Di Nardo, A., Witke, W., Dotti, C.G., RhoA/ROCK regulation of neuritogenesis via profilin IIa-mediated control of actin stability (2003) The Journal of Cell Biology, 162, pp. 1267-1279. , https://doi.org/10.1083/jcb.200304021, 14517206
de Strooper, B., Loss-of-function presenilin mutations in Alzheimer disease. Talking point on the role of presenilin mutations in Alzheimer disease (2007) EMBO Reports, 8, pp. 141-146. , https://doi.org/10.1038/sj.embor.7400897, 17268505
de Strooper, B., Annaert, W., Novel research horizons for presenilins and γ-secretases in cell biology and disease (2010) Annual Review of Cell and Developmental Biology, 26, pp. 235-260. , https://doi.org/10.1146/annurev-cellbio-100109-104117, 20604710
Deyts, C., Clutter, M., Herrera, S., Jovanovic, N., Goddi, A., Parent, A.T., Loss of presenilin function is associated with a selective gain of APP function (2016) Elife, 5. , https://doi.org/10.7554/eLife, 15645, PMID: 271 96744
Dulyaninova, N.G., House, R.P., Betapudi, V., Bresnick, A.R., Myosin-IIA heavy-chain phosphorylation regulates the motility of MDA-MB-231 carcinoma cells (2007) Molecular Biology of the Cell, 18, pp. 3144-3155. , https://doi.org/10.1091/mbc.e06-11-1056, 17567956
Dulyaninova, N.G., Bresnick, A.R., The heavy chain has its day: Regulation of myosin-II assembly (2013) Bioarchitecture, 3, pp. 77-85. , https://doi.org/10.4161/bioa.26133, 24002531
Egea, J., Klein, R., Bidirectional Eph–ephrin signaling during axon guidance (2007) Trends in Cell Biology, 17, pp. 230-238. , https://doi.org/10.1016/j.tcb.2007.03.004
España, J., Valero, J., Miñano-Molina, A.J., Masgrau, R., Martín, E., Guardia-Laguarta, C., Lleó, A., Saura, C.A., Beta-Amyloid disrupts activity-dependent gene transcription required for memory through the CREB coactivator CRTC1 (2010) Journal of Neuroscience, 30, pp. 9402-9410. , https://doi.org/10.1523/JNEUROSCI.2154-10.2010, 20631169
Free, R.B., Hazelwood, L.A., Sibley, D.R., Identifying novel protein-protein interactions using co-immunoprecipitation and mass spectroscopy (2009) Current Protocols in Neuroscience, , https://doi.org/10.1002/0471142301.ns0528s46, Chapter 5:Unit 5.28., 19170023
Gallarda, B.W., Bonanomi, D., Müller, D., Brown, A., Alaynick, W.A., Andrews, S.E., Lemke, G., Marquardt, T., Segregation of axial motor and sensory pathways via heterotypic trans-axonal signaling (2008) Science, 320, pp. 233-236. , https://doi.org/10.1126/science.1153758, 18403711
Gallo, G., RhoA-kinase coordinates F-actin organization and myosin II activity during semaphorin-3A-induced axon retraction (2006) Journal of Cell Science, 119, pp. 3413-3423. , https://doi.org/10.1242/jcs.03084, 16899819
Gao, P.P., Yue, Y., Cerretti, D.P., Dreyfus, C., Zhou, R., Ephrin-dependent growth and pruning of hippocampal axons (1999) PNAS, 96, pp. 4073-4077. , https://doi.org/10.1073/pnas.96.7.4073, 10097165
Georgakopoulos, A., Litterst, C., Ghersi, E., Baki, L., Xu, C., Serban, G., Robakis, N.K., Metalloproteinase/ Presenilin1 processing of ephrinB regulates EphB-induced src phosphorylation and signaling (2006) The EMBO Journal, 25, pp. 1242-1252. , https://doi.org/10.1038/sj.emboj.7601031, 16511561
Govek, E.E., Newey, S.E., van Aelst, L., The role of the rho GTPases in neuronal development (2005) Genes & Development, 19, pp. 1-49
Hall, A., Lalli, G., Rho and ras GTPases in axon growth, guidance, and branching (2010) Cold Spring Harbor Perspectives in Biology, 2. , 20182621
Handler, M., Yang, X., Shen, J., Presenilin-1 regulates neuronal differentiation during neurogenesis (2000) Development, 127, pp. 2593-2606. , 10821758
Hartmann, D., de Strooper, B., Saftig, P., Presenilin-1 deficiency leads to loss of Cajal-Retzius neurons and cortical dysplasia similar to human type 2 lissencephaly (1999) Current Biology, 9, pp. 719-727. , https://doi.org/10.1016/S0960-9822(99)80331-5, 10421573
Hattori, M., Osterfield, M., Flanagan, J.G., Regulated cleavage of a contact-mediated axon repellent (2000) Science, 289, pp. 1360-1365
Hirose, M., Ishizaki, T., Watanabe, N., Uehata, M., Kranenburg, O., Moolenaar, W.H., Matsumura, F., Narumiya, S., Molecular dissection of the Rho-associated protein kinase (P160ROCK)-regulated neurite remodeling in neuroblastoma N1E-115 cells (1998) The Journal of Cell Biology, 141, pp. 1625-1636. , https://doi.org/10.1083/jcb.141.7.1625, 9647654
Hitt, B., Riordan, S.M., Kukreja, L., Eimer, W.A., Rajapaksha, T.W., Vassar, R., β-Site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1)-deficient mice exhibit a close homolog of L1 (CHL1) loss-of-function phenotype involving axon guidance defects (2012) Journal of Biological Chemistry, 287, pp. 38408-38425. , https://doi.org/10.1074/jbc.M112.415505, 22988240
Hu, X., Hicks, C.W., He, W., Wong, P., Macklin, W.B., Trapp, B.D., Yan, R., Bace1 modulates myelination in the central and peripheral nervous system (2006) Nature Neuroscience, 9, pp. 1520-1525. , https://doi.org/10.1038/nn1797, 17099708
Inoue, E., Deguchi-Tawarada, M., Togawa, A., Matsui, C., Arita, K., Katahira-Tayama, S., Sato, T., Takai, Y., Synaptic activity prompts gamma-secretase-mediated cleavage of EphA4 and dendritic spine formation (2009) The Journal of Cell Biology, 185, pp. 551-564. , https://doi.org/10.1083/jcb.200809151, PMID: 1 9414612
Janes, P.W., Saha, N., Barton, W.A., Kolev, M.V., Wimmer-Kleikamp, S.H., Nievergall, E., Blobel, C.P., Nikolov, D.B., Adam meets eph: An ADAM substrate recognition module acts as a molecular switch for ephrin cleavage in trans (2005) Cell, 123, pp. 291-304. , https://doi.org/10.1016/j.cell.2005.08.014, 16239146
Janes, P.W., Wimmer-Kleikamp, S.H., Frangakis, A.S., Treble, K., Griesshaber, B., Sabet, O., Grabenbauer, M., Lackmann, M., Cytoplasmic relaxation of active eph controls ephrin shedding by ADAM10 (2009) PLOS Biology, 7. , https://doi.org/10.1371/journal.pbio.1000215, 19823572
Kamal, A., Almenar-Queralt, A., Leblanc, J.F., Roberts, E.A., Goldstein, L.S., Kinesin-mediated axonal transport of a membrane compartment containing beta-secretase and presenilin-1 requires APP (2001) Nature, 414, pp. 643-648. , https://doi.org/10.1038/414643a, 11740561
Kania, A., Klein, R., Mechanisms of ephrin-Eph signalling in development, physiology and disease (2016) Nature Reviews Molecular Cell Biology, 17, pp. 240-256. , https://doi.org/10.1038/nrm.2015.16, 26790531
Kovács, M., Tóth, J., Hetényi, C., Málnási-Csizmadia, A., Sellers, J.R., Mechanism of blebbistatin inhibition of myosin II (2004) Journal of Biological Chemistry, 279, pp. 35557-35563. , https://doi.org/10.1074/jbc.M405319200, 15205456
Kubo, T., Endo, M., Hata, K., Taniguchi, J., Kitajo, K., Tomura, S., Yamaguchi, A., Yamashita, T., Myosin IIA is required for neurite outgrowth inhibition produced by repulsive guidance molecule (2008) Journal of Neurochemistry, 105, pp. 113-126. , https://doi.org/10.1111/j.1471-4159.2007.05125.x, 18005226
Kudo, C., Ajioka, I., Hirata, Y., Nakajima, K., Expression profiles of EphA3 at both the RNA and protein level in the developing mammalian forebrain (2005) The Journal of Comparative Neurology, 487, pp. 255-269. , https://doi.org/10.1002/cne.20551
Lawrenson, I.D., Wimmer-Kleikamp, S.H., Lock, P., Schoenwaelder, S.M., Down, M., Boyd, A.W., Alewood, P.F., Lackmann, M., Ephrin-A5 induces rounding, Blebbing and de-adhesion of EphA3-expressing 293T and melanoma cells by CrkII and Rho-mediated signalling (2002) Journal of Cell Science, 115, pp. 1059-1072. , 11870224
Litterst, C., Georgakopoulos, A., Shioi, J., Ghersi, E., Wisniewski, T., Wang, R., Ludwig, A., Robakis, N.K., Ligand binding and calcium influx induce distinct ectodomain/gamma-secretase-processing pathways of EphB2 receptor (2007) Journal of Biological Chemistry, 282, pp. 16155-16163. , https://doi.org/10.1074/jbc.M611449200, 17428795
Lleó, A., Saura, C.A., γ-secretase substrates and their implications for drug development in Alzheimer’s disease (2011) Current Topics in Medicinal Chemistry, 11, pp. 1513-1527. , https://doi.org/10.2174/156802611795861004, 21510835
Marquardt, T., Shirasaki, R., Ghosh, S., Andrews, S.E., Carter, N., Hunter, T., Pfaff, S.L., Coexpressed EphA receptors and ephrin-A ligands mediate opposing actions on growth cone navigation from distinct membrane domains (2005) Cell, 121, pp. 127-139. , https://doi.org/10.1016/j.cell.2005.01.020, 15820684
Matsui, C., Inoue, E., Kakita, A., Arita, K., Deguchi-Tawarada, M., Togawa, A., Yamada, A., Takahashi, H., Involvement of the γ-secretase-mediated EphA4 signaling pathway in synaptic pathogenesis of Alzheimer’s disease (2012) Brain Pathology, 22, pp. 776-787. , https://doi.org/10.1111/j.1750-3639.2012.00587.x, 22404518
Mohamed, A.M., Boudreau, J.R., Yu, F.P., Liu, J., Chin-Sang, I.D., The Caenorhabditis elegans eph receptor activates NCK and N-WASP, and inhibits Ena/VASP to regulate growth cone dynamics during axon guidance (2012) PLOS Genetics, 8. , https://doi.org/10.1371/journal.pgen.1002513, 22383893
Nishikimi, M., Oishi, K., Tabata, H., Torii, K., Nakajima, K., Segregation and pathfinding of callosal axons through EphA3 signaling (2011) Journal of Neuroscience, 31, pp. 16251-16260. , https://doi.org/10.1523/JNEUROSCI.3303-11.2011, 22072676
Noren, N.K., Pasquale, E.B., Eph receptor-ephrin bidirectional signals that target ras and rho proteins (2004) Cellular Signalling, 16, pp. 655-666. , https://doi.org/10.1016/j.cellsig.2003.10.006, 15093606
Otal, R., Burgaya, F., Frisén, J., Soriano, E., Martínez, A., Ephrin-A5 modulates the topographic mapping and connectivity of commissural axons in murine Hippocampus (2006) Neuroscience, 141, pp. 109-121. , https://doi.org/10.1016/j.neuroscience.2006.03.052, 16690216
Patel, B.N., van Vactor, D.L., Axon guidance: The cytoplasmic tail (2002) Current Opinion in Cell Biology, 14, pp. 221-229. , https://doi.org/10.1016/S0955-0674(02)00308-3, 11891122
Pecci, A., Ma, X., Savoia, A., Adelstein, R.S., MYH9: Structure, functions and role of non-muscle myosin IIA in human disease (2018) Gene, 664, pp. 152-167. , https://doi.org/10.1016/j.gene.2018.04.048, 29679756
Peethumnongsin, E., Yang, L., Kallhoff-Muñoz, V., Hu, L., Takashima, A., Pautler, R.G., Zheng, H., Convergence of presenilin-and tau-mediated pathways on axonal trafficking and neuronal function (2010) Journal of Neuroscience, 30, pp. 13409-13418. , https://doi.org/10.1523/JNEUROSCI.1964-10.2010, 20926667
Pigino, G., Pelsman, A., Mori, H., Busciglio, J., Presenilin-1 mutations reduce cytoskeletal association, deregulate neurite growth, and potentiate neuronal dystrophy and tau phosphorylation (2001) The Journal of Neuroscience, 21, pp. 834-842. , https://doi.org/10.1523/JNEUROSCI.21-03-00834.2001, 11157069
Riekkinen, P.J., Laulumaa, V., Sirviö, J., Soininen, H., Helkala, E.L., Recent progress in the research of Alzheimer’s disease (1987) Medical Biology, 65, pp. 83-88. , 3309490
Sastre, M., Steiner, H., Fuchs, K., Capell, A., Multhaup, G., Condron, M.M., Teplow, D.B., Haass, C., Presenilin-dependent gamma-secretase processing of beta-amyloid precursor protein at a site corresponding to the S3 cleavage of notch (2001) EMBO Reports, 2, pp. 835-841. , https://doi.org/10.1093/embo-reports/kve180, 11520861
Saura, C.A., Tomita, T., Davenport, F., Harris, C.L., Iwatsubo, T., Thinakaran, G., Evidence that intramolecular associations between presenilin domains are obligatory for endoproteolytic processing (1999) Journal of Biological Chemistry, 274, pp. 13818-13823. , https://doi.org/10.1074/jbc.274.20.13818, 10318786
Saura, C.A., Choi, S.Y., Beglopoulos, V., Malkani, S., Zhang, D., Shankaranarayana Rao, B.S., Chattarji, S., Shen, J., Loss of presenilin function causes impairments of memory and synaptic plasticity followed by age-dependent neurodegeneration (2004) Neuron, 42, pp. 23-36
Shamah, S.M., Lin, M.Z., Goldberg, J.L., Estrach, S., Sahin, M., Hu, L., Bazalakova, M., Greenberg, M.E., EphA receptors regulate growth cone dynamics through the novel guanine nucleotide exchange factor ephexin (2001) Cell, 105, pp. 233-244. , https://doi.org/10.1016/S0092-8674(01)00314-2, 11336673
Shen, J., Bronson, R.T., Chen, D.F., Xia, W., Selkoe, D.J., Tonegawa, S., Skeletal and CNS defects in Presenilin-1-deficient mice (1997) Cell, 89, pp. 629-639. , https://doi.org/10.1016/S0092-8674(00)80244-5, 9160754
Shen, J., Kelleher, R.J., The presenilin hypothesis of Alzheimer’s disease: Evidence for a loss-of-function pathogenic mechanism (2007) PNAS, 104, pp. 403-409. , https://doi.org/10.1073/pnas.0608332104, 17197420
Shi, G., Yue, G., Zhou, R., EphA3 functions are regulated by collaborating phosphotyrosine residues (2010) Cell Research, 20, pp. 1263-1275. , https://doi.org/10.1038/cr.2010.115, 20697431
Song, S., Rosen, K.M., Corfas, G., Biological function of nuclear receptor tyrosine kinase action (2013) Cold Spring Harbor Perspectives in Biology, 5
Stokin, G.B., Lillo, C., Falzone, T.L., Brusch, R.G., Rockenstein, E., Mount, S.L., Raman, R., Goldstein, L.S., Axonopathy and transport deficits early in the pathogenesis of Alzheimer’s disease (2005) Science, 307, pp. 1282-1288. , 15731448
Vaidya, A., Pniak, A., Lemke, G., Brown, A., EphA3 null mutants do not demonstrate motor axon guidance defects (2003) Molecular and Cellular Biology, 23, pp. 8092-8098. , https://doi.org/10.1128/MCB.23.22.8092-8098.2003, 14585969
Wahl, S., Barth, H., Ciossek, T., Aktories, K., Mueller, B.K., Ephrin-A5 induces collapse of growth cones by activating rho and rho kinase (2000) The Journal of Cell Biology, 149, pp. 263-270. , https://doi.org/10.1083/jcb.149.2.263, 10769020
Wang, S., Watanabe, T., Noritake, J., Fukata, M., Yoshimura, T., Itoh, N., Harada, T., Kaibuchi, K., IQGAP3, a novel effector of Rac1 and Cdc42, regulates neurite outgrowth (2007) Journal of Cell Science, 120, pp. 567-577. , https://doi.org/10.1242/jcs.03356, 17244649
Willem, M., Garratt, A.N., Novak, B., Citron, M., Kaufmann, S., Rittger, A., Destrooper, B., Haass, C., Control of peripheral nerve myelination by the beta-secretase BACE1 (2006) Science, 314, pp. 664-666. , https://doi.org/10.1126/science.1132341, 16990514
Wittenburg, N., Eimer, S., Lakowski, B., Röhrig, S., Rudolph, C., Baumeister, R., Presenilin is required for proper morphology and function of neurons in C. Elegans (2000) Nature, 406, pp. 306-309. , https://doi.org/10.1038/35018575, 10917532
Wylie, S.R., Chantler, P.D., Myosin IIA drives neurite retraction (2003) Molecular Biology of the Cell, 14, pp. 4654-4666. , https://doi.org/10.1091/mbc.e03-03-0187, 12960431
Yue, Y., Chen, Z.Y., Gale, N.W., Blair-Flynn, J., Hu, T.J., Yue, X., Cooper, M., Zhou, R., Mistargeting hippocampal axons by expression of a truncated eph receptor (2002) PNAS, 99, pp. 10777-10782. , https://doi.org/10.1073/pnas.162354599, 12124402