Balmer, J.; Department of Mechanical Engineering, University of Canterbury, New Zealand
Pretty, C. G.; Department of Mechanical Engineering, University of Canterbury, New Zealand
Davidson, S.; Department of Mechanical Engineering, University of Canterbury, New Zealand
Mehta-Wilson, T.; Department of Mechanical Engineering, University of Canterbury, New Zealand
Desaive, Thomas ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Thermodynamique des phénomènes irréversibles
Smith, R.; Department of Mechanical Engineering, University of Canterbury, New Zealand
Shaw, G. M.; Christchurch Hospital Intensive Care Unit, New Zealand
Chase, J. G.; Department of Mechanical Engineering, University of Canterbury, New Zealand
Language :
English
Title :
Clinically applicable model-based method, for physiologically accurate flow waveform and stroke volume estimation
Publication date :
2020
Journal title :
Computer Methods and Programs in Biomedicine
ISSN :
0169-2607
eISSN :
1872-7565
Publisher :
Elsevier Ireland Ltd
Volume :
185
Peer reviewed :
Peer Reviewed verified by ORBi
Name of the research project :
Royal Society of New Zealand: JCFUOC15013505716IEA-2015-GB01
Funders :
MBIER - Ministry for Business Innovation and Employment Royal Society of New Zealand
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Ministry of Health, Mortality and Demographic Data 2011, New Zealand Ministry of Health, 2013.
D. Mozaffarian, E. J. Benjamin, A. S. Go, D. K. Arnett, M. J. Blaha, M. Cushman, S. De Ferranti, J. P. Després, H. J. Fullerton, V. J. Howard, M. D. Huffman, S. E. Judd, B. M. Kissela, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, S. Liu, R. H. Mackey, D. B. Matchar, D. K. McGuire, E. R. Mohler, C. S. Moy, P. Muntner, M. E. Mussolino, K. Nasir, R. W. Neumar, G. Nichol, L. Palaniappan, D. K. Pandey, M. J. Reeves, C. J. Rodriguez, P. D. Sorlie, J. Stein, A. Towfighi, T. N. Turan, S. S. Virani, J. Z. Willey, D. Woo, R. W. Yeh, M. B. Turner, Heart disease and stroke statistics-2015 update: A report from the American Heart Association, Circulation 131(4) (2015) e29–e39. 10.1161/CIR.0000000000000152
M. Cecconi, D. De Backer, M. Antonelli, R. Beale, J. Bakker, C. Hofer, R. Jaeschke, A. Mebazaa, M. R. Pinsky, J. L. Teboul, J. L. Vincent, A. Rhodes, Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine, Intensive Care Med. 40(12) (2014) 1795–1815. 10.1007/s00134-014-3525-z
R. Gust, A. Gottschalk, H. Bauer, B. W. Böttiger, H. Böhrer, E. Martin, Cardiac output measurement by transpulmonary versus conventional thermodilution technique in intensive care patients after coronary artery bypass grafting, J. Cardiothorac. Vasc. Anesth. 12(5) (1998) 519–522. 10.1016/S1053-0770(98)90093-3
D. A. Reuter, A. Kirchner, T. W. Felbinger, F. C. Weis, E. Kilger, P. Lamm, A. E. Goetz, Usefulness of left ventricular stroke volume variation to assess fluid responsiveness in patients with reduced cardiac function, Crit. Care Med. 31(5) (2003) 1399–1404. 10.1097/01.CCM.0000059442.37548.E1
T. Luecke, P. Pelosi, Clinical review: Positive end-expiratory pressure and cardiac output, Crit. Care 9(6) (2005) 607–621. 10.1186/cc3877
L. J. Montenij, E. E. de Waal, W. F. Buhre, Arterial waveform analysis in anesthesia and critical care, Curr. Opin. Anaesthesiol. 24(6) (2011) 651–656. 10.1097/ACO.0b013e32834cd2d9
P. M. Dark, M. Singer, The validity of trans-esophageal Doppler ultrasonography as a measure of cardiac output in critically ill adults, Intensive Care Med. 30(11) (2004) 2060–2066. 10.1007/s00134-004-2430-2
P. E. Marik, Noninvasive cardiac output monitors: A state-of the-art review, J. Cardiothorac. Vasc. Anesth. 27(1) (2013) 121–134. 10.1053/j.jvca.2012.03.022
B. Bataille, M. Bertuit, M. Mora, M. Mazerolles, P. Cocquet, B. Masson, P. E. Moussot, J. Ginot, S. Silva, J. Larché, Comparison of esCCO and transthoracic echocardiography for non-invasive measurement of cardiac output intensive care, Br. J. Anaesth. 109(6) (2012) 879–886. 10.1093/bja/aes298
L. A. Critchley, J. A. Critchley, A meta-analysis of studies using bias and precision statistics to compare cardiac output measurement techniques, J. Clin. Monit. Comput. 15(2) (1999) 85–91. 10.1023/A:1009982611386
O. Goedje, K. Hoeke, M. Lichtwarck-Aschoff, A. Faltchauser, P. Lamm, B. Reichart, Continuous cardiac output by femoral arterial thermodilution calibrated pulse contour analysis: Comparison with pulmonary arterial thermodilution, Crit. Care Med. 27(11) (1999) 2407–2412. 10.1097/00003246-199911000-00014
G. Rödig, C. Prasser, C. Keyl, A. Liebold, J. Hobbhahn, Continuous cardiac output measurement: pulse contour analysis vs thermodilution technique in cardiac surgical patients., Br. J. Anaesth. 82(4) (1999) 525–530. 10.1093/bja/82.4.525
O. Gödje, R. Friedl, a. Hannekum, Accuracy of beat-to-beat cardiac output monitoring by pulse contour analysis in hemodynamical unstable patients., Med. Sci. Monit. 7(6) (2001) 1344–50.
M. Hadian, H. K. Kim, D. A. Severyn, M. R. Pinsky, Cross-comparison of cardiac output trending accuracy of LiDCO, PiCCO, FloTrac and pulmonary artery catheters, Crit. Care 14(6) (2010). 10.1186/cc9335
S. Kamoi, C. Pretty, P. Docherty, D. Squire, J. Revie, Y. S. Chiew, T. Desaive, G. M. Shaw, J. G. Chase, Continuous Stroke Volume Estimation from Aortic Pressure Using Zero Dimensional Cardiovascular Model: Proof of Concept Study from Porcine Experiments, PLoS One 9(7) (2014) e102476. 10.1371/journal.pone.0102476
S. Kamoi, C. Pretty, J. Balmer, S. Davidson, A. Pironet, T. Desaive, G. M. Shaw, J. G. Chase, Improved pressure contour analysis for estimating cardiac stroke volume using pulse wave velocity measurement, Biomed. Eng. Online 16(1) (2017) 51. 10.1186/s12938-017-0341-z
N. Westerhof, J. W. Lankhaar, B. E. Westerhof, The arterial windkessel, Med. Biol. Eng. Comput. 47(2) (2009) 131–141. 10.1007/s11517-008-0359-2
N. Westerhof, N. Stergiopulos, M. I. Noble, Snapshots of Hemodynamics, Springer, Boston, MA, 2010. 10.1007/978-1-4419-6363-5
J. C. Bramwell, A. V. Hill, The Velocity of the Pulse Wave in Man, Proc. R. Soc. B Biol. Sci. 93(652) (1922) 298–306. 10.1098/rspb.1922.0022
S. Hanya, Validity of the Water Hammer Formula for Determining Regional Aortic Pulse Wave Velocity: Comparison of One-Point and Two-Point (Foot-to-Foot) Measurements Using a Multisensor Catheter in Human, Ann. Vasc. Dis. 6(2) (2013) 150–158. 10.3400/avd.oa.13-00046
P. E. Marik, Hemodynamic parameters to guide fluid therapy, Transfus. Altern. Transfus. Med. 11(3) (2010) 102–112. 10.1111/j.1778-428X.2010.01133.x
D. A. Reuter, T. W. Felbinger, E. Kilger, C. Schmidt, P. Lamm, A. E. Goetz, Optimizing fluid therapy in mechanically ventilated patients after cardiac surgery by on-line monitoring of left ventricular stroke volume variations. Comparison with aortic systolic pressure variations, Br. J. Anaesth. 88(1) (2002) 124–126. 10.1093/bja/88.1.124
H. B. Nguyen, E. P. Rivers, F. M. Abrahamian, G. J. Moran, E. Abraham, S. Trzeciak, D. T. Huang, T. Osborn, D. Stevens, D. A. Talan, Severe Sepsis and Septic Shock: Review of the Literature and Emergency Department Management Guidelines, Ann. Emerg. Med. 48(1) (2006) 54.e1. 10.1016/j.annemergmed.2006.02.015
M. W. Merx, C. Weber, Sepsis and the heart, Br. J. Anaesth. 104(1) (2010) 3–11. 10.1093/bja/aep339
O. Frank, The basic shape of the arterial pulse. First treatise: mathematical analysis. 1899., J. Mol. Cell. Cardiol. 22(3) (1889) 255–77. 10.1016/0022-2828(90)91460-O
N. Westerhof, B. E. Westerhof, Waves and Windkessels reviewed, Artery Res. 18(2017) (2017) 102–111. 10.1016/j.artres.2017.03.001
J. Aguado-Sierra, J. Alastruey, J.-J. Wang, N. Hadjiloizou, J. Davies, K. H. Parker, Separation of the reservoir and wave pressure and velocity from measurements at an arbitrary location in arteries, Proc. Inst. Mech. Eng. Part H J. Eng. Med. 222(4) (2008) 403–416. 10.1243/09544119JEIM315
J. Balmer, C. Pretty, S. Davidson, T. Desaive, S. Kamoi, A. Pironet, P. Morimont, N. Janssen, B. Lambermont, G. M. Shaw, J. G. Chase, Pre-ejection period, the reason why the electrocardiogram Q-wave is an unreliable indicator of pulse wave initialization, Physiol. Meas. 39(9) (2018a) 095005. 10.1088/1361-6579/aada72
J. Balmer, C. Pretty, A. Amies, T. Desaive, J. G. Chase, Accurate dicrotic notch detection using adaptive shear transforms, 10th IFAC Symp. Biol. Med. Syst. 51(27) (2018b) 74–79. 10.1016/j.ifacol.2018.11.664
J. Balmer, C. Pretty, S. Davidson, T. Desaive, S. Habran, J. G. Chase, Effect of arterial pressure measurement location on pulse contour stroke volume estimation, during a rapid change in hemodynamic state, 10th IFAC Symp. Biol. Med. Syst. 51(27) (2018c) 162–167. 10.1016/j.ifacol.2018.11.649
M. J. Oppenheim, D. F. Sittig, An Innovative Dicrotic Notch Detection Algorithm Which Combines Rule-Based Logic with Digital Signal Processing Techniques, Comput. Biomed. Res. 28(2) (1995) 154–170. https://doi.org/10.1006/cbmr.1995.1011
V. Gemignani, E. Bianchini, F. Faita, M. Giannoni, E. Pasanisi, E. Picano, T. Bombardini, Assessment of cardiologic systole and diastole duration in exercise stress tests with a transcutaneous accelerometer sensor, in: 2008 Comput. Cardiol., volume 35, IEEE, 2008, pp. 153–156. 10.1109/CIC.2008.4749000
J. P. Mynard, J. J. Smolich, Wave potential and the one-dimensional windkessel as a wave-based paradigm of diastolic arterial hemodynamics, Am. J. Physiol. Circ. Physiol. 307(3) (2014) H307–H318. 10.1152/ajpheart.00293.2014
J. P. Mynard, J. J. Smolich, Wave potential: A unified model of arterial waves, reservoir phenomena and their interaction, Artery Res. 18 (2017) 55–63. 10.1016/j.artres.2017.04.002
J.-J. Wang, A. B. O'Brien, N. G. Shrive, K. H. Parker, J. V. Tyberg, Time-domain representation of ventricular-arterial coupling as a windkessel and wave system, Am. J. Physiol. - Hear. Circ. Physiol. 284(4) (2003) H1358–H1368. 10.1152/ajpheart.00175.2002
J. V. Tyberg, J. C. Bouwmeester, K. H. Parker, N. G. Shrive, J. J. Wang, The case for the reservoir-wave approach, Int. J. Cardiol. 172(2) (2014) 299–306. 10.1016/j.ijcard.2013.12.178
J. G. Chase, J. C. Preiser, J. L. Dickson, A. Pironet, Y. S. Chiew, C. G. Pretty, G. M. Shaw, B. Benyo, K. Moeller, S. Safaei, M. Tawhai, P. Hunter, T. Desaive, Next-generation, personalised, model-based critical care medicine: A state-of-the art review of in silico virtual patient models, methods, and cohorts, and how to validation them, Biomed. Eng. Online 17(1) (2018) 1–29. 10.1186/s12938-018-0455-y
P. Segers, L. Taelman, J. Degroote, J. Bols, J. Vierendeels, The aortic reservoir-wave as a paradigm for arterial haemodynamics: Insights from three-dimensional fluid-structure interaction simulations in a model of aortic coarctation, J. Hypertens. 33(3) (2015) 554–563. 10.1097/HJH.0000000000000449
S. Hoeksel, J. R. C. Jansen, J. A. Blom, J. J. Schreuder, Detection of Dicrotic Notch in Arterial Pressure Signals, J. Clin. Monit. 13(5) (1997) 309–316. 10.1023/A:1007414906294
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.