Balmer, J.; Department of Mechanical Engineering, University of Canterbury, New Zealand
Pretty, C.; Department of Mechanical Engineering, University of Canterbury, New Zealand
Davidson, S.; Department of Mechanical Engineering, University of Canterbury, New Zealand
Desaive, Thomas ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Thermodynamique des phénomènes irréversibles
Habran, S.; GIGA Cardiovascular Science, University of Li‘ege Li‘ege, Belgium
Chase, J. G.; Department of Mechanical Engineering, University of Canterbury, New Zealand
Language :
English
Title :
Effect of arterial pressure measurement location on pulse contour stroke volume estimation, during a rapid change in hemodynamic state
Balmer, J., Pretty, C., Amies, A., Desaive, T., and Chase, J.G. (2018). Accurate dicrotic notch detection using adaptive shear transforms. In 10th IFAC Symp. Biol. Med. Syst.
Bataille, B., Bertuit, M., Mora, M., Mazerolles, M., Coc-quet, P., Masson, B., Moussot, P.E., Ginot, J., Silva, S., Larché, J., Comparison of esCCO and transthoracic echocardiography for non-invasive measurement of cardiac output intensive care. Br. J. Anaesth. 109:6 (2012), 879–886.
Cecconi, M., De Backer, D., Antonelli, M., Beale, R., Bakker, J., Hofer, C., Jaeschke, R., Mebazaa, A., Pin-sky, M.R., Teboul, J.L., Vincent, J.L., Rhodes, A., Consensus on circulatory shock and hemody-namic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med. 40:12 (2014), 1795–1815.
Chase, J.G., Moeller, K., Shaw, G.M., Schranz, C., Chiew, Y.S., Desaive, T., When the value of gold is zero. BMC Res. Notes, 7(1), 2014, 404.
Dawber, T.R., Thomas, H.E., McNamara, P.M., Characteristics of the Dicrotic Notch. Angiology 24:4 (1973), 244–255.
Felder, R.B., Thames, M.D., Interaction between cardiac receptors and sinoaortic baroreceptors in the control of efferent cardiac sympathetic nerve activity during myocardial ischemia in dogs. Circ. Res. 45:6 (1979), 728–736.
Gershengorn, H.B., Garland, A., Kramer, A., Scales, D.C., Rubenfeld, G., Wunsch, H., Variation of arterial and central venous catheter use in United States intensive care units. Anesthesiology 120:3 (2014), 650–664.
Goedje, O., Hoeke, K., Lichtwarck-Aschoff, M., Faltchauser, A., Lamm, P., Reichart, B., Continuous cardiac output by femoral arterial thermodilution calibrated pulse contour analysis: Comparison with pulmonary arterial thermodilution. Crit. Care Med. 27:11 (1999), 2407–2412.
Hadian, M., Kim, H.K., Severyn, D.A., Pinsky, M.R., Cross-comparison of cardiac output trending accuracy of LiDCO, PiCCO, FloTrac and pulmonary artery catheters. Crit. Care, 14(6), 2010.
Luecke, T., Pelosi, P., Clinical review: Positive end-expiratory pressure and cardiac output. Crit. Care 9:6 (2005), 607–621.
Marik, P.E., Noninvasive cardiac output monitors: A state-of the-art review. J. Cardiothorac. Vasc. Anesth. 27:1 (2013), 121–134.
Montenij, L.J., de Waal, E.E., Buhre, W.F., Arterial waveform analysis in anesthesia and critical care. Curr. Opin. Anaesthesiol. 24:6 (2011), 651–656.
Newlin, D.B., Levenson, R.W., Pre-ejection Period: Measuring Beta-adrenergic Influences Upon the Heart. Psychophysiology 16:6 (1979), 546–552.
Nichols, W.W., O'Rourke, M.F., and Vlachopoulos, C. (2011). Aging. In McDonald's blood flow Arter. Theor. Exp. Clin. Princ., chapter 19, 412–446. CRC Press, 6 edition.
Obata, Y., Mizogami, M., Nyhan, D., Berkowitz, D.E., Steppan, J., Barodka, V., Pilot study: Estimation of stroke volume and cardiac output from pulse wave velocity. PLoS One 12:1 (2017), 1–12.
Philips Electronics North America Corporation (2002). Hemodynamic Monitoring using the PiCCO Method.
Reuter, D.A., Kirchner, A., Felbinger, T.W., Weis, F.C., Kilger, E., Lamm, P., Goetz, A.E., Usefulness of left ventricular stroke volume variation to assess fluid responsiveness in patients with reduced cardiac function. Crit. Care Med. 31:5 (2003), 1399–1404.
Rödig, G., Prasser, C., Keyl, C., Liebold, A., Hobb-hahn, J., Continuous cardiac output measurement: pulse contour analysis vs thermodilution technique in cardiac surgical patients. Br. J. Anaesth. 82:4 (1999), 525–530.
Sato, T., Shishido, T., Kawada, T., Miyano, H., Miyashita, H., Inagaki, M., Sugimachi, M., Sunagawa, K., ESPVR of in situ rat left ventricle shows contractility-dependent curvilinearity. Am. J. Physiol. 274:5 Pt 2 (1998), H1429–34.
Tibby, S.M., Monitoring cardiac function in intensive care. Arch. Dis. Child. 88:1 (2003), 46–52.
Tyberg, J.V., Bouwmeester, J.C., Parker, K.H., Shrive, N.G., Wang, J.J., The case for the reservoir-wave approach. Int. J. Cardiol. 172:2 (2014), 299–306.
Van Der Velde, E.T., Burkhoff, D., Steendijk, P., Karsdon, J., Sagawa, K., Baan, J., Nonlinearity and load sensitivity of end-systolic pressure-volume relation of canine left ventricle in vivo. Circulation 83:1 (1991), 315–327.
Westphal, G., Garrido, A., Almeida, D., Rocha-e Silva, M., Poli de Figueiredo, L., Pulse Pressure Respiratory Variation As Early Marker of Cardiac Output Fall in Experimental Hemorrhagic Shock. Shock, 26(Supplement 1), 2006, 39.
Wetterslev, M., Møller-Sørensen, H., Johansen, R.R., Perner, A., Systematic review of cardiac output measurements by echocardiography vs. thermodilution: the techniques are not interchangeable. Intensive Care Med. 42:8 (2016), 1223–1233.