[en] We have explored the domino reaction between propargylic alcohols, carbon dioxide and various alcohols with the double objective to prepare oxo-alkylcarbonates with a high yield and selectivity under mild conditions and to extend the process to the synthesis of phosgene-free polycarbonates. We first searched for a common catalytic system that was highly selective for the two reactions involved in the domino process, i.e. the cycloaddition of CO2 to propargylic alcohol to yield α-alkylidene cyclic carbonate (αCC), and the alcoholysis of αCC to furnish the oxo-alkylcarbonate. Kinetics studies monitored by operando IR spectroscopy and supported by 1H-NMR analyses and DFT modeling have permitted to identify an efficient binary catalytic system composed of a combination of tetrabutylammonium phenolate [TBA][OPh] and silver iodide (AgI) (or copper iodide (CuI)) and to understand its action mode. The [TBA][OPh]/AgI catalytic system (5 mol%) was then successfully implemented for the selective preparation of a range of oxo-alkylcarbonates by the domino reaction with alcohols and propargylic alcohols of different structures. Most of these oxo-alkylcarbonates were produced at a high yield (≧ 97 %) under mild operating conditions, i.e. at 60 °C and 1 bar of CO2. The one-pot synthesis of various poly(β-oxocarbonate)s from bis(propargylic alcohol)s, diols and CO2 was finally investigated and the best operating conditions ([TBA][OPh]/AgI (10 mol%), 60 °C, 15 bar) afforded polycarbonate oligomers with weight-average molar masses of 4,300 g/mol. Although the system should be optimized to produce longer polymer chains, this process offers a new phosgene-free alternative to the synthesis of functional polycarbonates (poly(oxo-carbonate)s) under mild conditions.
Research Center/Unit :
Complex and Entangled Systems from Atoms to Materials (CESAM) Research Unit Research Unit, Center for Education and Research on Macromolecules (CERM)
Disciplines :
Chemistry Materials science & engineering
Author, co-author :
Ngassam Tounzoua, Charlène ; University of Liège (ULiège), Complex and Entangled Systems from Atoms to Materials (CESAM) Research Unit, Center for Education and Research on Macromolecules (CERM), Belgium
Grignard, Bruno ; University of Liège (ULiège), Complex and Entangled Systems from Atoms to Materials (CESAM) Research Unit, Center for Education and Research on Macromolecules (CERM), Belgium
Brege, Antoine ; University of Liège (ULiège), Complex and Entangled Systems from Atoms to Materials (CESAM) Research Unit, Center for Education and Research on Macromolecules (CERM), Belgium
Jérôme, Christine ; University of Liège (ULiège), Complex and Entangled Systems from Atoms to Materials (CESAM) Research Unit, Center for Education and Research on Macromolecules (CERM), Belgium
Tassaing, Thierry; University of Bordeaux, CNRS, Institute of Molecular Sciences, Talence, France
Méreau, Raphaël; University of Bordeaux, CNRS, Institute of Molecular Sciences, Talence, France
Detrembleur, Christophe ; University of Liège (ULiège), Complex and Entangled Systems from Atoms to Materials (CESAM) Research Unit, Center for Education and Research on Macromolecules (CERM), Belgium
Language :
English
Title :
A catalytic domino approach towards oxo-alkyl carbonates and polycarbonates from CO2, propargylic alcohols and (mono- and di-) alcohols
Publication date :
06 July 2020
Journal title :
ACS Sustainable Chemistry and Engineering
eISSN :
2168-0485
Publisher :
American Chemical Society, Washington, United States - District of Columbia
Volume :
8
Issue :
26
Pages :
9698-9710
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture EOS - The Excellence Of Science Program FWO - Fonds Wetenschappelijk Onderzoek Vlaanderen
Alves, M.; Grignard, B.; Gennen, S.; Mereau, R.; Detrembleur, C.; Jerome, C.; Tassaing, T. Organocatalytic Promoted Coupling of Carbon Dioxide with Epoxides: A Rational Investigation of the Cocatalytic Activity of Various Hydrogen Bond Donors. Catal. Sci. Technol. 2015, 5 (9), 4636-4643, 10.1039/C5CY00891C
Alves, M.; Grignard, B.; Mereau, R.; Jerome, C.; Tassaing, T.; Detrembleur, C. Organocatalyzed Coupling of Carbon Dioxide with Epoxides for the Synthesis of Cyclic Carbonates: Catalyst Design and Mechanistic Studies. Catal. Sci. Technol. 2017, 7 (13), 2651-2684, 10.1039/C7CY00438A
Fiorani, G.; Guo, W.; Kleij, A. Sustainable Conversion of Carbon Dioxide: The Advent of Organocatalysis. Green Chem. 2015, 17 (3), 1375-1389, 10.1039/C4GC01959H
Büttner, H.; Longwitz, L.; Steinbauer, J.; Wulf, C.; Werner, T. Recent Developments in the Synthesis of Cyclic Carbonates from Epoxides and CO2. Top. Curr. Chem. 2017, 375 (3), 1-56, 10.1007/s41061-017-0136-5
Kleij, A. Green Catalytic Synthesis of Heterocyclic Structures Using Carbon Dioxide and Related Motifs. In Green Synthetic Approaches for Biologically Relevant Heterocycles; Elsevier, Inc., 2015; pp 141-162. 10.1016/B978-0-12-800070-0.00006-2.
Zhang, Q.; Yuan, H. Y.; Fukaya, N.; Yasuda, H.; Choi, J. C. A Simple Zinc Catalyst for Carbamate Synthesis Directly from CO2. ChemSusChem 2017, 10 (7), 1501-1508, 10.1002/cssc.201601878
Zhang, Q.; Yuan, H. Y.; Fukaya, N.; Choi, J. C. Alkali Metal Salt as Catalyst for Direct Synthesis of Carbamate from Carbon Dioxide. ACS Sustainable Chem. Eng. 2018, 6 (5), 6675-6681, 10.1021/acssuschemeng.8b00449
Arshadi, S.; Banaei, A.; Ebrahimiasl, S.; Monfared, A.; Vessally, E. Solvent-Free Incorporation of CO2 into 2-Oxazolidinones: A Review. RSC Adv. 2019, 9 (34), 19465-19482, 10.1039/C9RA00551J
Zhang, Q.; Yuan, H. Y.; Fukaya, N.; Yasuda, H.; Choi, J. C. Direct Synthesis of Carbamate from CO2 Using a Task-Specific Ionic Liquid Catalyst. Green Chem. 2017, 19 (23), 5614-5624, 10.1039/C7GC02666H
Sengoden, M.; North, M.; Whitwood, A. C. Synthesis of Oxazolidinones by Using Carbon Dioxide as a C1 Building Block and an Aluminium-Based Catalyst. ChemSusChem 2019, 12 (14), 3296-3303, 10.1002/cssc.201901171
Pulla, S.; Felton, C. M.; Ramidi, P.; Gartia, Y.; Ali, N.; Nasini, U. B.; Ghosh, A. Advancements in Oxazolidinone Synthesis Utilizing Carbon Dioxide as a C1 Source. J. CO2 Util. 2013, 2, 49-57, 10.1016/j.jcou.2013.07.005
Song, J.; Liu, Q.; Liu, H.; Jiang, X. Recent Advances in Palladium-Catalyzed Carboxylation with CO2. Eur. J. Org. Chem. 2018, 2018 (6), 696-713, 10.1002/ejoc.201701436
Luo, J.; Larrosa, I. C-H Carboxylation of Aromatic Compounds through CO2 Fixation. ChemSusChem 2017, 10 (17), 3317-3332, 10.1002/cssc.201701058
Yu, B.; Diao, Z. F.; Guo, C. X.; He, L. N. Carboxylation of Olefins/Alkynes with CO2 to Industrially Relevant Acrylic Acid Derivatives. J. CO2 Util. 2013, 1, 60-68, 10.1016/j.jcou.2013.01.001
Grignard, B.; Gennen, S.; Jérôme, C.; Kleij, A.; Detrembleur, C. Advances in the Use of CO2 as a Renewable Feedstock for the Synthesis of Polymers. Chem. Soc. Rev. 2019, 48 (16), 4466-4514, 10.1039/C9CS00047J
Martín, C.; Kleij, A. Terpolymers Derived from Limonene Oxide and Carbon Dioxide: Access to Cross-Linked Polycarbonates with Improved Thermal Properties. Macromolecules 2016, 49 (17), 6285-6295, 10.1021/acs.macromol.6b01449
Yadav, N.; Seidi, F.; Crespy, D.; D'Elia, V. Polymers Based on Cyclic Carbonates as Trait d'Union Between Polymer Chemistry and Sustainable CO2 Utilization. ChemSusChem 2019, 12 (4), 724-754, 10.1002/cssc.201802770
Zhu, Y.; Romain, C.; Williams, C. Sustainable Polymers from Renewable Resources. Nature 2016, 540 (7633), 354-362, 10.1038/nature21001
Kamphuis, A. J.; Picchioni, F.; Pescarmona, P. CO2-Fixation into Cyclic and Polymeric Carbonates: Principles and Applications. Green Chem. 2019, 21 (3), 406-448, 10.1039/C8GC03086C
Grignard, B.; Thomassin, J.; Gennen, S.; Poussard, L.; Bonnaud, L.; Raquez, J.; Dubois, P.; Tran, M.; Park, C. B.; Jerome, C.; Detrembleur, C. CO2-Blown Microcellular Non-Isocyanate Polyurethane (NIPU) Foams: From Bio-and CO2-Sourced Monomers to Potentially Thermal Insulating Materials. Green Chem. 2016, 18 (7), 2206-2215, 10.1039/C5GC02723C
Carre, C.; Ecochard, Y.; Caillol, S.; Averous, L. From the Synthesis of Biobased Cyclic Carbonate to Polyhydroxyurethanes: A Promising Route towards Renewable Non-Isocyanate Polyurethanes. ChemSusChem 2019, 12, 3410-3430, 10.1002/cssc.201900737
Poussard, L.; Mariage, J.; Grignard, B.; Detrembleur, C.; Jerome, C.; Calberg, C.; Heinrichs, B.; De Winter, J.; Gerbaux, P.; Raquez, J.-M.; Bonnaud, L.; Dubois, P. Non-Isocyanate Polyurethanes from Carbonated Soybean Oil Using Monomeric or Oligomeric Diamines to Achieve Thermosets or Thermoplastics. Macromolecules 2016, 49 (6), 2162-2171, 10.1021/acs.macromol.5b02467
Gennen, S.; Grignard, B.; Thomassin, J. M.; Gilbert, B.; Vertruyen, B.; Jerome, C.; Detrembleur, C. Polyhydroxyurethane Hydrogels: Synthesis and Characterizations. Eur. Polym. J. 2016, 84, 849-862, 10.1016/j.eurpolymj.2016.07.013
Rabnawaz, M.; Wyman, I.; Auras, R.; Cheng, S. A Roadmap towards Green Packaging: The Current Status and Future Outlook for Polyesters in the Packaging Industry. Green Chem. 2017, 19 (20), 4737-4753, 10.1039/C7GC02521A
Ma, S.; Liu, C.; Sablong, R. J.; Noordover, B. A. J.; Hensen, E. J. M.; Van Benthem, R. A. T. M.; Koning, C. E. Catalysts for Isocyanate-Free Polyurea Synthesis: Mechanism and Application. ACS Catal. 2016, 6 (10), 6883-6891, 10.1021/acscatal.6b01673
Tang, D.; Mulder, D. J.; Noordover, B. A. J.; Koning, C. E. Well-Defined Biobased Segmented Polyureas Synthesis via a TBD-Catalyzed Isocyanate-Free Route. Macromol. Rapid Commun. 2011, 32 (17), 1379-1385, 10.1002/marc.201100223
Dabral, S.; Schaub, T. The Use of Carbon Dioxide (CO2) as a Building Block in Organic Synthesis from an Industrial Perspective. Adv. Synth. Catal. 2019, 361 (2), 223-246, 10.1002/adsc.201801215
Hu, J.; Ma, J.; Zhu, Q.; Qian, Q.; Han, H.; Mei, Q.; Han, B. Zinc(II)-Catalyzed Reactions of Carbon Dioxide and Propargylic Alcohols to Carbonates at Room Temperature. Green Chem. 2016, 18 (2), 382-385, 10.1039/C5GC01870F
Qiu, J.; Zhao, Y.; Li, Z.; Wang, H.; Fan, M.; Wang, J. Efficient Ionic-Liquid-Promoted Chemical Fixation of CO2 into α-Alkylidene Cyclic Carbonates. ChemSusChem 2017, 10 (6), 1120-1127, 10.1002/cssc.201601129
Song, Q. W.; Yu, B.; Li, X. D.; Ma, R.; Diao, Z. F.; Li, R. G.; Li, W.; He, L. N. Efficient Chemical Fixation of CO2 promoted by a Bifunctional Ag2WO4/Ph3P System. Green Chem. 2014, 16 (3), 1633-1638, 10.1039/c3gc42406e
Song, Q. W.; He, L. N. Robust Silver(I) Catalyst for the Carboxylative Cyclization of Propargylic Alcohols with Carbon Dioxide under Ambient Conditions. Adv. Synth. Catal. 2016, 358 (8), 1251-1258, 10.1002/adsc.201500639
Gu, Y.; Shi, F.; Deng, Y. Ionic Liquid as an Efficient Promoting Medium for Fixation of CO2: Clean Synthesis of α-Methylene Cyclic Carbonates from CO2 and Propargyl Alcohols Catalyzed by Metal Salts under Mild Conditions. J. Org. Chem. 2004, 69 (2), 391-394, 10.1021/jo0351365
Falbe, J.; Bahrmann, H.; Lipps, W.; Mayer, D.; Frey, G. D. Alcohols, Aliphatic. In Ullmann's Encyclopedia of Industrial Chemistry; Wiley-VCH Verlag GmbH & Co. KGaA, 2013; pp 1-26. 10.1002/14356007.a01_279.pub2.
Magliozzi, F.; Chollet, G.; Grau, E.; Cramail, H. Benefit of the Reactive Extrusion in the Course of Polyhydroxyurethanes Synthesis by Aminolysis of Cyclic Carbonates. ACS Sustainable Chem. Eng. 2019, 7 (20), 17282-17292, 10.1021/acssuschemeng.9b04098
Song, Q. W.; Chen, W. Q.; Ma, R.; Yu, A.; Li, Q. Y.; Chang, Y.; He, L. N. Bifunctional Silver(I) Complex-Catalyzed CO2 Conversion at Ambient Conditions: Synthesis of α-Methylene Cyclic Carbonates and Derivatives. ChemSusChem 2015, 8 (5), 821-827, 10.1002/cssc.201402921
Qi, C. R.; Jiang, H. F. Efficient Synthesis of β-Oxopropylcarbamates in Compressed CO2 without Any Additional Catalyst and Solvent. Green Chem. 2007, 9 (12), 1284-1286, 10.1039/b707893e
Joumier, J. M.; Bruneau, C.; Dixneuf, P. H. Direct Access to β-Oxopropyl Carbonates from Bulky Alcohols. J. Chem. Soc., Perkin Trans. 1 1993, 50 (15), 1749-1751, 10.1039/P19930001749
Hu, J.; Ma, J.; Lu, L.; Qian, Q.; Zhang, Z.; Xie, C.; Han, B. Synthesis of Asymmetrical Organic Carbonates Using CO2 as a Feedstock in AgCl/Ionic Liquid System at Ambient Conditions. ChemSusChem 2017, 10 (6), 1292-1297, 10.1002/cssc.201601773
Gennen, S.; Grignard, B.; Tassaing, T.; Jerome, C.; Detrembleur, C. Polymers CO2-Sourced α-Alkylidene Cyclic Carbonates: A Step Forward in the Quest for Functional Regioregular Poly(Urethane)s and Poly(Carbonate)s. Angew. Chem., Int. Ed. 2017, 56, 10394-10398, 10.1002/anie.201704467
Ouhib, F.; Grignard, B.; Van Den Broeck, E.; Luxen, A.; Robeyns, K.; Van Speybroeck, V.; Jerome, C.; Detrembleur, C. A Switchable Domino Process for the Construction of Novel CO2-Sourced Sulfur-Containing Building Blocks and Polymers. Angew. Chem., Int. Ed. 2019, 58 (34), 11768-11773, 10.1002/anie.201905969
Ouhib, F.; Meabe, L.; Mahmoud, A.; Eshraghi, N.; Grignard, B.; Thomassin, J.-M.; Aqil, A.; Boschini, F.; Jérôme, C.; Mecerreyes, D.; Detrembleur, C. CO2-Sourced Polycarbonates as Solid Electrolytes for Room Temperature Operating Lithium Batteries. J. Mater. Chem. A 2019, 7, 9844-9853, 10.1039/C9TA01564G
Ouhib, F.; Meabe, L.; Mahmoud, A.; Grignard, B.; Thomassin, J.-M.; Boschini, F.; Zhu, H.; Forsyth, M.; Mecerreyes, D.; Detrembleur, C. Influence of the Cyclic versus Linear Carbonate Segments in the Properties and Performance of CO2-Sourced Polymer Electrolytes for Lithium Batteries. ACS Appl. Polym. Mater. 2020, 2 (2), 922-931, 10.1021/acsapm.9b01130
Nakano, K.; Kamada, T.; Nozaki, K. Selective Formation of Polycarbonate over Cyclic Carbonate: Copolymerization of Epoxides with Carbon Dioxide Catalyzed by a Cobalt(III) Complex with a Piperidinium End-Capping Arm. Angew. Chem., Int. Ed. 2006, 45 (43), 7274-7277, 10.1002/anie.200603132
Poland, S. J.; Darensbourg, D. J. A Quest for Polycarbonates Provided Via Sustainable Epoxide/CO2 Copolymerization Processes. Green Chem. 2017, 19 (21), 4990-5011, 10.1039/C7GC02560B
Allen, S. D.; Moore, D. R.; Lobkovsky, E. B.; Coates, G. W. High-Activity, Single-Site Catalysts for the Alternating Copolymerization of CO2 and Propylene Oxide. J. Am. Chem. Soc. 2002, 124 (48), 14284-14285, 10.1021/ja028071g
Inoue, S.; Koinuma, H.; Tsuruta, T. Copolymerization of Carbon Dioxide and Epoxide. J. Polym. Sci., Part B: Polym. Lett. 1969, 7, 287-292, 10.1002/pol.1969.110070408
Dabral, S.; Licht, U.; Rudolf, P.; Bollmann, G.; Hashmi, A. S. K.; Schaub, T. Synthesis and Polymerisation of α-Alkylidene Cyclic Carbonates Obtained from Carbon Dioxide, Epoxides and the Primary Propargylic Alcohol 1,4-Butynediol. Green Chem. 2020, 22, 1553-1558, 10.1039/C9GC04320A
Song, D.; Li, D.; Xiao, X.; Cheng, C.; Chaemchuen, S.; Yuan, Y.; Verpoort, F. Synthesis of β-Oxopropylcarbamates in a Recyclable AgBr/Ionic Liquid Catalytic System: An Efficient Assembly of CO2 under Ambient Pressure. J. CO2 Util. 2018, 27, 217-222, 10.1016/j.jcou.2018.07.021
Song, Q. W.; Liu, P.; Han, L. H.; Zhang, K.; He, L. N. Upgrading CO2 by Incorporation into Urethanes through Silver-Catalyzed One-Pot Stepwise Amidation Reaction. Chin. J. Chem. 2018, 36 (2), 147-152, 10.1002/cjoc.201700572
Qi, C.; Huang, L.; Jiang, H. Efficient Synthesis of β-Oxoalkyl Carbamates from Carbon Dioxide, Internal Propargylic Alcohols, and Secondary Amines Catalyzed by Silver Salts and DBU. Synthesis 2010, 2010, 1433-1440, 10.1055/s-0029-1218675
Zhao, Q.-N.; Song, Q.-W.; Liu, P.; Zhang, K.; Hao, J. Ag(I)/(C2H5)4NCl Cooperation Catalysis for Fixing CO2 or Its Derivatives into β-Oxopropylcarbamates. Chemistry Select 2018, 3 (24), 6897-6901, 10.1002/slct.201801422
Song, Q. W.; Zhou, Z. H.; Yin, H.; He, L. N. Silver(I)-Catalyzed Synthesis of β-Oxopropylcarbamates from Propargylic Alcohols and CO2 Surrogate: A Gas-Free Process. ChemSusChem 2015, 8 (23), 3967-3972, 10.1002/cssc.201501176
Zhou, Z.; Xia, S.; He, L. Green Catalysis for Three-Component Reaction of Carbon Dioxide, Propargylic Alcohols and Nucleophiles. Wuli Huaxue Xuebao 2018, 34 (8), 838-844, 10.3866/PKU.WHXB201712271
Song, Q.-W.; Zhao, Q.-N.; Li, J.-Y.; Zhang, K.; Liu, P. Selective Conversion of CO2 and Switchable Alcohols into Linear or Cyclic Carbonates via Versatile Zinc Catalysis. Synthesis 2019, 51 (03), 739-746, 10.1055/s-0037-1611058
Zhou, Z.-H.; Song, Q.-W.; Xie, J.-N.; Ma, R.; He, L. Silver(I)-Catalyzed Three-Component Reaction of Propargylic Alcohols, CO2 and Monohydric Alcohols: Thermodynamically Feasible Access to β-Oxopropyl Carbonates. Chem.-Asian J. 2016, 11 (14), 2065-2071, 10.1002/asia.201600600
Li, J.; Song, Q.; Zhang, H.; Liu, P.; Zhang, K.; Wang, J.; Zhang, D. Synergistic Ag(I)/nBu4NBr-Catalyzed Fixation of CO2 to β-Oxopropyl Carbonates via Propargylic Alcohols and Monohydric Alcohols. Tetrahedron 2019, 75 (15), 2343-2349, 10.1016/j.tet.2019.03.006
Li, J.-Y.; Han, L.-H.; Xu, Q.-C.; Song, Q.-W.; Liu, P.; Zhang, K. Cascade Strategy for Atmospheric Pressure CO2 Fixation to Cyclic Carbonates via Silver Sulfadiazine and Et4NBr Synergistic Catalysis. ACS Sustainable Chem. Eng. 2019, 7 (3), 3378-3388, 10.1021/acssuschemeng.8b05579
Grignard, B.; Ngassamtounzoua, C.; Gennen, S.; Gilbert, B.; Méreau, R.; Jerome, C.; Tassaing, T.; Detrembleur, C. Boosting the Catalytic Performance of Organic Salts for the Fast and Selective Synthesis of α-Alkylidene Cyclic Carbonates from Carbon Dioxide and Propargylic Alcohols. ChemCatChem 2018, 10 (12), 2584-2592, 10.1002/cctc.201800063
Yang, Y.; Fan, H.; Meng, Q.; Zhang, Z.; Yang, G.; Han, B. Ionic Liquid [OMIm][OAc] Directly Inducing Oxidation Cleavage of the β-O-4 Bond of Lignin Model Compounds. Chem. Commun. 2017, 53 (63), 8850-8853, 10.1039/C7CC04209D
Hu, Y.; Song, J.; Xie, C.; Wu, H.; Jiang, T.; Yang, G.; Han, B. Transformation of CO2into α-Alkylidene Cyclic Carbonates at Room Temperature Cocatalyzed by CuI and Ionic Liquid with Biomass-Derived Levulinate Anion. ACS Sustainable Chem. Eng. 2019, 7, 5614-5619, 10.1021/acssuschemeng.8b05851
Dabral, S.; Bayarmagnai, B.; Hermsen, M.; Schießl, J.; Mormul, V.; Hashmi, A. S. K.; Schaub, T. Silver-Catalyzed Carboxylative Cyclization of Primary Propargyl Alcohols with CO2. Org. Lett. 2019, 21 (5), 1422-1425, 10.1021/acs.orglett.9b00156
Brege, A.; Méreau, R.; McGehee, K.; Grignard, B.; Detrembleur, C.; Jerome, C.; Tassaing, T. The Coupling of CO2 with Diols Promoted by Organic Dual Systems: Towards Products Divergence via Benchmarking of the Performance Metrics. J. CO2 Util. 2020, 38, 88-98, 10.1016/j.jcou.2020.01.003
Zhou, Z.-H.; Song, Q.-W.; Xie, J.-N.; Ma, R.; He, L.-N. Silver(I)-Catalyzed Three-Component Reaction of Propargylic Alcohols, CO2 and Monohydric Alcohols: Thermodynamically Feasible Access to Beta-Oxopropyl Carbonates. Chem.-Asian J. 2016, 11, 2065-2071, 10.1002/asia.201600600