[en] We have explored the domino reaction between propargylic alcohols, carbon dioxide and various alcohols with the double objective to prepare oxo-alkylcarbonates with a high yield and selectivity under mild conditions and to extend the process to the synthesis of phosgene-free polycarbonates. We first searched for a common catalytic system that was highly selective for the two reactions involved in the domino process, i.e. the cycloaddition of CO2 to propargylic alcohol to yield α-alkylidene cyclic carbonate (αCC), and the alcoholysis of αCC to furnish the oxo-alkylcarbonate. Kinetics studies monitored by operando IR spectroscopy and supported by 1H-NMR analyses and DFT modeling have permitted to identify an efficient binary catalytic system composed of a combination of tetrabutylammonium phenolate [TBA][OPh] and silver iodide (AgI) (or copper iodide (CuI)) and to understand its action mode. The [TBA][OPh]/AgI catalytic system (5 mol%) was then successfully implemented for the selective preparation of a range of oxo-alkylcarbonates by the domino reaction with alcohols and propargylic alcohols of different structures. Most of these oxo-alkylcarbonates were produced at a high yield (≧ 97 %) under mild operating conditions, i.e. at 60 °C and 1 bar of CO2. The one-pot synthesis of various poly(β-oxocarbonate)s from bis(propargylic alcohol)s, diols and CO2 was finally investigated and the best operating conditions ([TBA][OPh]/AgI (10 mol%), 60 °C, 15 bar) afforded polycarbonate oligomers with weight-average molar masses of 4,300 g/mol. Although the system should be optimized to produce longer polymer chains, this process offers a new phosgene-free alternative to the synthesis of functional polycarbonates (poly(oxo-carbonate)s) under mild conditions.
Research Center/Unit :
Complex and Entangled Systems from Atoms to Materials (CESAM) Research Unit Research Unit, Center for Education and Research on Macromolecules (CERM)
Disciplines :
Chemistry Materials science & engineering
Author, co-author :
Ngassam Tounzoua, Charlène ; University of Liège (ULiège), Complex and Entangled Systems from Atoms to Materials (CESAM) Research Unit, Center for Education and Research on Macromolecules (CERM), Belgium
Grignard, Bruno ; University of Liège (ULiège), Complex and Entangled Systems from Atoms to Materials (CESAM) Research Unit, Center for Education and Research on Macromolecules (CERM), Belgium
Brege, Antoine ; University of Liège (ULiège), Complex and Entangled Systems from Atoms to Materials (CESAM) Research Unit, Center for Education and Research on Macromolecules (CERM), Belgium
Jérôme, Christine ; University of Liège (ULiège), Complex and Entangled Systems from Atoms to Materials (CESAM) Research Unit, Center for Education and Research on Macromolecules (CERM), Belgium
Tassaing, Thierry; University of Bordeaux, CNRS, Institute of Molecular Sciences, Talence, France
Méreau, Raphaël; University of Bordeaux, CNRS, Institute of Molecular Sciences, Talence, France
Detrembleur, Christophe ; University of Liège (ULiège), Complex and Entangled Systems from Atoms to Materials (CESAM) Research Unit, Center for Education and Research on Macromolecules (CERM), Belgium
Language :
English
Title :
A catalytic domino approach towards oxo-alkyl carbonates and polycarbonates from CO2, propargylic alcohols and (mono- and di-) alcohols
Publication date :
06 July 2020
Journal title :
ACS Sustainable Chemistry and Engineering
eISSN :
2168-0485
Publisher :
American Chemical Society, Washington, United States - District of Columbia
Volume :
8
Issue :
26
Pages :
9698-9710
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture EOS - The Excellence Of Science Program FWO - Fonds Wetenschappelijk Onderzoek Vlaanderen
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Alves, M.; Grignard, B.; Gennen, S.; Mereau, R.; Detrembleur, C.; Jerome, C.; Tassaing, T. Organocatalytic Promoted Coupling of Carbon Dioxide with Epoxides: A Rational Investigation of the Cocatalytic Activity of Various Hydrogen Bond Donors. Catal. Sci. Technol. 2015, 5 (9), 4636-4643, 10.1039/C5CY00891C
Alves, M.; Grignard, B.; Mereau, R.; Jerome, C.; Tassaing, T.; Detrembleur, C. Organocatalyzed Coupling of Carbon Dioxide with Epoxides for the Synthesis of Cyclic Carbonates: Catalyst Design and Mechanistic Studies. Catal. Sci. Technol. 2017, 7 (13), 2651-2684, 10.1039/C7CY00438A
Fiorani, G.; Guo, W.; Kleij, A. Sustainable Conversion of Carbon Dioxide: The Advent of Organocatalysis. Green Chem. 2015, 17 (3), 1375-1389, 10.1039/C4GC01959H
Büttner, H.; Longwitz, L.; Steinbauer, J.; Wulf, C.; Werner, T. Recent Developments in the Synthesis of Cyclic Carbonates from Epoxides and CO2. Top. Curr. Chem. 2017, 375 (3), 1-56, 10.1007/s41061-017-0136-5
Kleij, A. Green Catalytic Synthesis of Heterocyclic Structures Using Carbon Dioxide and Related Motifs. In Green Synthetic Approaches for Biologically Relevant Heterocycles; Elsevier, Inc., 2015; pp 141-162. 10.1016/B978-0-12-800070-0.00006-2.
Zhang, Q.; Yuan, H. Y.; Fukaya, N.; Yasuda, H.; Choi, J. C. A Simple Zinc Catalyst for Carbamate Synthesis Directly from CO2. ChemSusChem 2017, 10 (7), 1501-1508, 10.1002/cssc.201601878
Zhang, Q.; Yuan, H. Y.; Fukaya, N.; Choi, J. C. Alkali Metal Salt as Catalyst for Direct Synthesis of Carbamate from Carbon Dioxide. ACS Sustainable Chem. Eng. 2018, 6 (5), 6675-6681, 10.1021/acssuschemeng.8b00449
Arshadi, S.; Banaei, A.; Ebrahimiasl, S.; Monfared, A.; Vessally, E. Solvent-Free Incorporation of CO2 into 2-Oxazolidinones: A Review. RSC Adv. 2019, 9 (34), 19465-19482, 10.1039/C9RA00551J
Zhang, Q.; Yuan, H. Y.; Fukaya, N.; Yasuda, H.; Choi, J. C. Direct Synthesis of Carbamate from CO2 Using a Task-Specific Ionic Liquid Catalyst. Green Chem. 2017, 19 (23), 5614-5624, 10.1039/C7GC02666H
Sengoden, M.; North, M.; Whitwood, A. C. Synthesis of Oxazolidinones by Using Carbon Dioxide as a C1 Building Block and an Aluminium-Based Catalyst. ChemSusChem 2019, 12 (14), 3296-3303, 10.1002/cssc.201901171
Pulla, S.; Felton, C. M.; Ramidi, P.; Gartia, Y.; Ali, N.; Nasini, U. B.; Ghosh, A. Advancements in Oxazolidinone Synthesis Utilizing Carbon Dioxide as a C1 Source. J. CO2 Util. 2013, 2, 49-57, 10.1016/j.jcou.2013.07.005
Song, J.; Liu, Q.; Liu, H.; Jiang, X. Recent Advances in Palladium-Catalyzed Carboxylation with CO2. Eur. J. Org. Chem. 2018, 2018 (6), 696-713, 10.1002/ejoc.201701436
Luo, J.; Larrosa, I. C-H Carboxylation of Aromatic Compounds through CO2 Fixation. ChemSusChem 2017, 10 (17), 3317-3332, 10.1002/cssc.201701058
Yu, B.; Diao, Z. F.; Guo, C. X.; He, L. N. Carboxylation of Olefins/Alkynes with CO2 to Industrially Relevant Acrylic Acid Derivatives. J. CO2 Util. 2013, 1, 60-68, 10.1016/j.jcou.2013.01.001
Grignard, B.; Gennen, S.; Jérôme, C.; Kleij, A.; Detrembleur, C. Advances in the Use of CO2 as a Renewable Feedstock for the Synthesis of Polymers. Chem. Soc. Rev. 2019, 48 (16), 4466-4514, 10.1039/C9CS00047J
Martín, C.; Kleij, A. Terpolymers Derived from Limonene Oxide and Carbon Dioxide: Access to Cross-Linked Polycarbonates with Improved Thermal Properties. Macromolecules 2016, 49 (17), 6285-6295, 10.1021/acs.macromol.6b01449
Yadav, N.; Seidi, F.; Crespy, D.; D'Elia, V. Polymers Based on Cyclic Carbonates as Trait d'Union Between Polymer Chemistry and Sustainable CO2 Utilization. ChemSusChem 2019, 12 (4), 724-754, 10.1002/cssc.201802770
Zhu, Y.; Romain, C.; Williams, C. Sustainable Polymers from Renewable Resources. Nature 2016, 540 (7633), 354-362, 10.1038/nature21001
Kamphuis, A. J.; Picchioni, F.; Pescarmona, P. CO2-Fixation into Cyclic and Polymeric Carbonates: Principles and Applications. Green Chem. 2019, 21 (3), 406-448, 10.1039/C8GC03086C
Grignard, B.; Thomassin, J.; Gennen, S.; Poussard, L.; Bonnaud, L.; Raquez, J.; Dubois, P.; Tran, M.; Park, C. B.; Jerome, C.; Detrembleur, C. CO2-Blown Microcellular Non-Isocyanate Polyurethane (NIPU) Foams: From Bio-and CO2-Sourced Monomers to Potentially Thermal Insulating Materials. Green Chem. 2016, 18 (7), 2206-2215, 10.1039/C5GC02723C
Carre, C.; Ecochard, Y.; Caillol, S.; Averous, L. From the Synthesis of Biobased Cyclic Carbonate to Polyhydroxyurethanes: A Promising Route towards Renewable Non-Isocyanate Polyurethanes. ChemSusChem 2019, 12, 3410-3430, 10.1002/cssc.201900737
Poussard, L.; Mariage, J.; Grignard, B.; Detrembleur, C.; Jerome, C.; Calberg, C.; Heinrichs, B.; De Winter, J.; Gerbaux, P.; Raquez, J.-M.; Bonnaud, L.; Dubois, P. Non-Isocyanate Polyurethanes from Carbonated Soybean Oil Using Monomeric or Oligomeric Diamines to Achieve Thermosets or Thermoplastics. Macromolecules 2016, 49 (6), 2162-2171, 10.1021/acs.macromol.5b02467
Gennen, S.; Grignard, B.; Thomassin, J. M.; Gilbert, B.; Vertruyen, B.; Jerome, C.; Detrembleur, C. Polyhydroxyurethane Hydrogels: Synthesis and Characterizations. Eur. Polym. J. 2016, 84, 849-862, 10.1016/j.eurpolymj.2016.07.013
Rabnawaz, M.; Wyman, I.; Auras, R.; Cheng, S. A Roadmap towards Green Packaging: The Current Status and Future Outlook for Polyesters in the Packaging Industry. Green Chem. 2017, 19 (20), 4737-4753, 10.1039/C7GC02521A
Ma, S.; Liu, C.; Sablong, R. J.; Noordover, B. A. J.; Hensen, E. J. M.; Van Benthem, R. A. T. M.; Koning, C. E. Catalysts for Isocyanate-Free Polyurea Synthesis: Mechanism and Application. ACS Catal. 2016, 6 (10), 6883-6891, 10.1021/acscatal.6b01673
Tang, D.; Mulder, D. J.; Noordover, B. A. J.; Koning, C. E. Well-Defined Biobased Segmented Polyureas Synthesis via a TBD-Catalyzed Isocyanate-Free Route. Macromol. Rapid Commun. 2011, 32 (17), 1379-1385, 10.1002/marc.201100223
Dabral, S.; Schaub, T. The Use of Carbon Dioxide (CO2) as a Building Block in Organic Synthesis from an Industrial Perspective. Adv. Synth. Catal. 2019, 361 (2), 223-246, 10.1002/adsc.201801215
Hu, J.; Ma, J.; Zhu, Q.; Qian, Q.; Han, H.; Mei, Q.; Han, B. Zinc(II)-Catalyzed Reactions of Carbon Dioxide and Propargylic Alcohols to Carbonates at Room Temperature. Green Chem. 2016, 18 (2), 382-385, 10.1039/C5GC01870F
Qiu, J.; Zhao, Y.; Li, Z.; Wang, H.; Fan, M.; Wang, J. Efficient Ionic-Liquid-Promoted Chemical Fixation of CO2 into α-Alkylidene Cyclic Carbonates. ChemSusChem 2017, 10 (6), 1120-1127, 10.1002/cssc.201601129
Song, Q. W.; Yu, B.; Li, X. D.; Ma, R.; Diao, Z. F.; Li, R. G.; Li, W.; He, L. N. Efficient Chemical Fixation of CO2 promoted by a Bifunctional Ag2WO4/Ph3P System. Green Chem. 2014, 16 (3), 1633-1638, 10.1039/c3gc42406e
Song, Q. W.; He, L. N. Robust Silver(I) Catalyst for the Carboxylative Cyclization of Propargylic Alcohols with Carbon Dioxide under Ambient Conditions. Adv. Synth. Catal. 2016, 358 (8), 1251-1258, 10.1002/adsc.201500639
Gu, Y.; Shi, F.; Deng, Y. Ionic Liquid as an Efficient Promoting Medium for Fixation of CO2: Clean Synthesis of α-Methylene Cyclic Carbonates from CO2 and Propargyl Alcohols Catalyzed by Metal Salts under Mild Conditions. J. Org. Chem. 2004, 69 (2), 391-394, 10.1021/jo0351365
Falbe, J.; Bahrmann, H.; Lipps, W.; Mayer, D.; Frey, G. D. Alcohols, Aliphatic. In Ullmann's Encyclopedia of Industrial Chemistry; Wiley-VCH Verlag GmbH & Co. KGaA, 2013; pp 1-26. 10.1002/14356007.a01_279.pub2.
Magliozzi, F.; Chollet, G.; Grau, E.; Cramail, H. Benefit of the Reactive Extrusion in the Course of Polyhydroxyurethanes Synthesis by Aminolysis of Cyclic Carbonates. ACS Sustainable Chem. Eng. 2019, 7 (20), 17282-17292, 10.1021/acssuschemeng.9b04098
Song, Q. W.; Chen, W. Q.; Ma, R.; Yu, A.; Li, Q. Y.; Chang, Y.; He, L. N. Bifunctional Silver(I) Complex-Catalyzed CO2 Conversion at Ambient Conditions: Synthesis of α-Methylene Cyclic Carbonates and Derivatives. ChemSusChem 2015, 8 (5), 821-827, 10.1002/cssc.201402921
Qi, C. R.; Jiang, H. F. Efficient Synthesis of β-Oxopropylcarbamates in Compressed CO2 without Any Additional Catalyst and Solvent. Green Chem. 2007, 9 (12), 1284-1286, 10.1039/b707893e
Joumier, J. M.; Bruneau, C.; Dixneuf, P. H. Direct Access to β-Oxopropyl Carbonates from Bulky Alcohols. J. Chem. Soc., Perkin Trans. 1 1993, 50 (15), 1749-1751, 10.1039/P19930001749
Hu, J.; Ma, J.; Lu, L.; Qian, Q.; Zhang, Z.; Xie, C.; Han, B. Synthesis of Asymmetrical Organic Carbonates Using CO2 as a Feedstock in AgCl/Ionic Liquid System at Ambient Conditions. ChemSusChem 2017, 10 (6), 1292-1297, 10.1002/cssc.201601773
Gennen, S.; Grignard, B.; Tassaing, T.; Jerome, C.; Detrembleur, C. Polymers CO2-Sourced α-Alkylidene Cyclic Carbonates: A Step Forward in the Quest for Functional Regioregular Poly(Urethane)s and Poly(Carbonate)s. Angew. Chem., Int. Ed. 2017, 56, 10394-10398, 10.1002/anie.201704467
Ouhib, F.; Grignard, B.; Van Den Broeck, E.; Luxen, A.; Robeyns, K.; Van Speybroeck, V.; Jerome, C.; Detrembleur, C. A Switchable Domino Process for the Construction of Novel CO2-Sourced Sulfur-Containing Building Blocks and Polymers. Angew. Chem., Int. Ed. 2019, 58 (34), 11768-11773, 10.1002/anie.201905969
Ouhib, F.; Meabe, L.; Mahmoud, A.; Eshraghi, N.; Grignard, B.; Thomassin, J.-M.; Aqil, A.; Boschini, F.; Jérôme, C.; Mecerreyes, D.; Detrembleur, C. CO2-Sourced Polycarbonates as Solid Electrolytes for Room Temperature Operating Lithium Batteries. J. Mater. Chem. A 2019, 7, 9844-9853, 10.1039/C9TA01564G
Ouhib, F.; Meabe, L.; Mahmoud, A.; Grignard, B.; Thomassin, J.-M.; Boschini, F.; Zhu, H.; Forsyth, M.; Mecerreyes, D.; Detrembleur, C. Influence of the Cyclic versus Linear Carbonate Segments in the Properties and Performance of CO2-Sourced Polymer Electrolytes for Lithium Batteries. ACS Appl. Polym. Mater. 2020, 2 (2), 922-931, 10.1021/acsapm.9b01130
Nakano, K.; Kamada, T.; Nozaki, K. Selective Formation of Polycarbonate over Cyclic Carbonate: Copolymerization of Epoxides with Carbon Dioxide Catalyzed by a Cobalt(III) Complex with a Piperidinium End-Capping Arm. Angew. Chem., Int. Ed. 2006, 45 (43), 7274-7277, 10.1002/anie.200603132
Poland, S. J.; Darensbourg, D. J. A Quest for Polycarbonates Provided Via Sustainable Epoxide/CO2 Copolymerization Processes. Green Chem. 2017, 19 (21), 4990-5011, 10.1039/C7GC02560B
Allen, S. D.; Moore, D. R.; Lobkovsky, E. B.; Coates, G. W. High-Activity, Single-Site Catalysts for the Alternating Copolymerization of CO2 and Propylene Oxide. J. Am. Chem. Soc. 2002, 124 (48), 14284-14285, 10.1021/ja028071g
Inoue, S.; Koinuma, H.; Tsuruta, T. Copolymerization of Carbon Dioxide and Epoxide. J. Polym. Sci., Part B: Polym. Lett. 1969, 7, 287-292, 10.1002/pol.1969.110070408
Dabral, S.; Licht, U.; Rudolf, P.; Bollmann, G.; Hashmi, A. S. K.; Schaub, T. Synthesis and Polymerisation of α-Alkylidene Cyclic Carbonates Obtained from Carbon Dioxide, Epoxides and the Primary Propargylic Alcohol 1,4-Butynediol. Green Chem. 2020, 22, 1553-1558, 10.1039/C9GC04320A
Song, D.; Li, D.; Xiao, X.; Cheng, C.; Chaemchuen, S.; Yuan, Y.; Verpoort, F. Synthesis of β-Oxopropylcarbamates in a Recyclable AgBr/Ionic Liquid Catalytic System: An Efficient Assembly of CO2 under Ambient Pressure. J. CO2 Util. 2018, 27, 217-222, 10.1016/j.jcou.2018.07.021
Song, Q. W.; Liu, P.; Han, L. H.; Zhang, K.; He, L. N. Upgrading CO2 by Incorporation into Urethanes through Silver-Catalyzed One-Pot Stepwise Amidation Reaction. Chin. J. Chem. 2018, 36 (2), 147-152, 10.1002/cjoc.201700572
Qi, C.; Huang, L.; Jiang, H. Efficient Synthesis of β-Oxoalkyl Carbamates from Carbon Dioxide, Internal Propargylic Alcohols, and Secondary Amines Catalyzed by Silver Salts and DBU. Synthesis 2010, 2010, 1433-1440, 10.1055/s-0029-1218675
Zhao, Q.-N.; Song, Q.-W.; Liu, P.; Zhang, K.; Hao, J. Ag(I)/(C2H5)4NCl Cooperation Catalysis for Fixing CO2 or Its Derivatives into β-Oxopropylcarbamates. Chemistry Select 2018, 3 (24), 6897-6901, 10.1002/slct.201801422
Song, Q. W.; Zhou, Z. H.; Yin, H.; He, L. N. Silver(I)-Catalyzed Synthesis of β-Oxopropylcarbamates from Propargylic Alcohols and CO2 Surrogate: A Gas-Free Process. ChemSusChem 2015, 8 (23), 3967-3972, 10.1002/cssc.201501176
Zhou, Z.; Xia, S.; He, L. Green Catalysis for Three-Component Reaction of Carbon Dioxide, Propargylic Alcohols and Nucleophiles. Wuli Huaxue Xuebao 2018, 34 (8), 838-844, 10.3866/PKU.WHXB201712271
Song, Q.-W.; Zhao, Q.-N.; Li, J.-Y.; Zhang, K.; Liu, P. Selective Conversion of CO2 and Switchable Alcohols into Linear or Cyclic Carbonates via Versatile Zinc Catalysis. Synthesis 2019, 51 (03), 739-746, 10.1055/s-0037-1611058
Zhou, Z.-H.; Song, Q.-W.; Xie, J.-N.; Ma, R.; He, L. Silver(I)-Catalyzed Three-Component Reaction of Propargylic Alcohols, CO2 and Monohydric Alcohols: Thermodynamically Feasible Access to β-Oxopropyl Carbonates. Chem.-Asian J. 2016, 11 (14), 2065-2071, 10.1002/asia.201600600
Li, J.; Song, Q.; Zhang, H.; Liu, P.; Zhang, K.; Wang, J.; Zhang, D. Synergistic Ag(I)/nBu4NBr-Catalyzed Fixation of CO2 to β-Oxopropyl Carbonates via Propargylic Alcohols and Monohydric Alcohols. Tetrahedron 2019, 75 (15), 2343-2349, 10.1016/j.tet.2019.03.006
Li, J.-Y.; Han, L.-H.; Xu, Q.-C.; Song, Q.-W.; Liu, P.; Zhang, K. Cascade Strategy for Atmospheric Pressure CO2 Fixation to Cyclic Carbonates via Silver Sulfadiazine and Et4NBr Synergistic Catalysis. ACS Sustainable Chem. Eng. 2019, 7 (3), 3378-3388, 10.1021/acssuschemeng.8b05579
Grignard, B.; Ngassamtounzoua, C.; Gennen, S.; Gilbert, B.; Méreau, R.; Jerome, C.; Tassaing, T.; Detrembleur, C. Boosting the Catalytic Performance of Organic Salts for the Fast and Selective Synthesis of α-Alkylidene Cyclic Carbonates from Carbon Dioxide and Propargylic Alcohols. ChemCatChem 2018, 10 (12), 2584-2592, 10.1002/cctc.201800063
Yang, Y.; Fan, H.; Meng, Q.; Zhang, Z.; Yang, G.; Han, B. Ionic Liquid [OMIm][OAc] Directly Inducing Oxidation Cleavage of the β-O-4 Bond of Lignin Model Compounds. Chem. Commun. 2017, 53 (63), 8850-8853, 10.1039/C7CC04209D
Hu, Y.; Song, J.; Xie, C.; Wu, H.; Jiang, T.; Yang, G.; Han, B. Transformation of CO2into α-Alkylidene Cyclic Carbonates at Room Temperature Cocatalyzed by CuI and Ionic Liquid with Biomass-Derived Levulinate Anion. ACS Sustainable Chem. Eng. 2019, 7, 5614-5619, 10.1021/acssuschemeng.8b05851
Dabral, S.; Bayarmagnai, B.; Hermsen, M.; Schießl, J.; Mormul, V.; Hashmi, A. S. K.; Schaub, T. Silver-Catalyzed Carboxylative Cyclization of Primary Propargyl Alcohols with CO2. Org. Lett. 2019, 21 (5), 1422-1425, 10.1021/acs.orglett.9b00156
Brege, A.; Méreau, R.; McGehee, K.; Grignard, B.; Detrembleur, C.; Jerome, C.; Tassaing, T. The Coupling of CO2 with Diols Promoted by Organic Dual Systems: Towards Products Divergence via Benchmarking of the Performance Metrics. J. CO2 Util. 2020, 38, 88-98, 10.1016/j.jcou.2020.01.003
Zhou, Z.-H.; Song, Q.-W.; Xie, J.-N.; Ma, R.; He, L.-N. Silver(I)-Catalyzed Three-Component Reaction of Propargylic Alcohols, CO2 and Monohydric Alcohols: Thermodynamically Feasible Access to Beta-Oxopropyl Carbonates. Chem.-Asian J. 2016, 11, 2065-2071, 10.1002/asia.201600600
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.