community assembly; functional diversity; functional trait coordination,; leaf economics spectrum; metal tolerance; species coexistence; toxicity gradien; trait multidimensionality
Abstract :
[en] 1. Functional traits are commonly used to calculate a wide array of functional diversity indices to infer different mechanisms of community assembly and spe-cies coexistence. Recently, the degree of interspecific covariation between multi-ple functional traits has been suggested as a mechanism influencing both species distributions and abundances in communities. However, empirical assessments of this theory along environmental gradients are still scarce due to the lack of an appropriate method and of sufficiently strong environmental gradients.2. Here we compare interspecific trait integration (ITI) across plant communities along a marked gradient of copper toxicity in the soil, using new multivariate and bivariate indices. This was achieved using the range of the eigenvalues of a princi-pal component analysis on the traits of the species in a local community (multivari-ate ITI index) and the correlations between traits in local communities (bivariate ITI index).3. We show that the plant metal tolerance strategy (i.e. leaf metal content) is rela-tively independent from leaf economics, while negatively correlated to plant size. In addition, our results indicate a weak support for the expected general patterns of trait syndromes, such as the ‘leaf economics spectrum’ or the ‘leaf–height–seed’, at the whole-community scale. This arises from an increase in multivariate trait in-tegration along the soil copper gradient. The strongest trait integration is caused by an increase in the degree of association between certain traits on metal-rich soils. The multivariate trait integration explains species richness better than other commonly used functional diversity indices.4. Our study highlights the power of ITI, as well as its complementarity to other functional diversity indices, to investigate the variation in functional strategies and their drivers along environmental gradients. The increase in trait integration with soil metal toxicity in plant communities supports that highly constraining en-vironments select increasingly coordinated sets of functional traits, in turn pos-sibly driving the decrease in species richness. Further studies should assess the generality and underlying physiological mechanisms of such ecological patterns.
Disciplines :
Environmental sciences & ecology
Author, co-author :
Delhaye, Guillaume; Université Libre de Bruxelles - ULB > Laboratoire d'Ecologie Végétale et Biogéochimie
Bauman, David; Université Libre de Bruxelles - ULB > Laboratoire d'Ecologie Végétale et Biogéochimie
Seleck, Maxime ; Université de Liège - ULiège > Département GxABT > Biodiversité et Paysage
Ilunga wa Ilunga, Edouard; University of Lubumbashi > Faculty of Agronomy > Ecology, Restoration Ecology and Landscape Research Unit
Mahy, Grégory ; Université de Liège - ULiège > Département GxABT > Biodiversité et Paysage
Meerts, Pierre; Université Libre de Bruxelles - ULB > Laboratoire d'Ecologie Végétale et Biogéochimie
Language :
English
Title :
Interspecific trait integration increases with environmental harshness: a case study along a metal toxicity gradient
Adams, D. C., & Collyer, M. L. (2016). On the comparison of the strength of morphological integration across morphometric datasets. Evolution, 70(11), 2623–2631. https://doi.org/10.1111/evo.13045
Aguirre-Gutiérrez, J., Oliveras, I., Rifai, S., Fauset, S., Adu-Bredu, S., Affum-Baffoe, K., … Malhi, Y. (2019). Drier tropical forests are susceptible to functional changes in response to a long-term drought. Ecology Letters, 22(5), 855–865. https://doi.org/10.1111/ele.13243
Baker, A. J. (1981). Accumulators and excluders-strategies in the response of plants to heavy metals. Journal of Plant Nutrition, 3(1–4), 643–654. https://doi.org/10.1080/01904168109362867
Behmer, S. T., Lloyd, C. M., Raubenheimer, D., Stewart-clark, J., Knight, J., Leighton, R. S., … Smith, J. A. C. (2005). Metal hyperaccumulation in plants: Mechanisms of defence against insect herbivores. Functional Ecology, 19(1), 55–66. https://doi.org/10.1111/j.0269-8463.2005.00943.x
Bernard-Verdier, M., Navas, M. L., Vellend, M., Violle, C., Fayolle, A., & Garnier, E. (2012). Community assembly along a soil depth gradient: Contrasting patterns of plant trait convergence and divergence in a Mediterranean rangeland. Journal of Ecology, 100(6), 1422–1433. https://doi.org/10.1111/1365-2745.12003
Blonder, B. (2018). Hypervolume concepts in niche- and trait-based ecology. Ecography, 41(9), 1441–1455. https://doi.org/10.1111/ecog.03187
Boisson, S., Monty, A., Séleck, M., Shutcha, M. N., Faucon, M. P., & Mahy, G. (2020). Ecological niche distribution along soil toxicity gradients: Bridging theoretical expectations and metallophyte conservation. Ecological Modelling, 415, 108861. https://doi.org/10.1016/j.ecolmodel.2019.108861
Boucher, F. C., Thuiller, W., Arnoldi, C., Albert, C. H., & Lavergne, S. (2013). Unravelling the architecture of functional variability in wild populations of Polygonum viviparum L. Functional Ecology, 27(2), 382–391. https://doi.org/10.1111/1365-2435.12034
Butterfield, B. J., & Suding, K. N. (2013). Single-trait functional indices outperform multi-trait indices in linking environmental gradients and ecosystem services in a complex landscape. Journal of Ecology, 101(1), 9–17. https://doi.org/10.1111/1365-2745.12013
Chapin III, F. S., Autumn, K., & Pugnaire, F. (1993). Evolution of suites of traits in response to environmental stress. The American Naturalist, 142, 78–92. https://doi.org/10.1086/285524
Cheverud, J. M., Wagner, G. P., & Dow, M. M. (1989). Methods for the comparative analysis of variation patterns. Systematic Zoology, 38(3), 201–213. https://doi.org/10.2307/2992282
Cornelissen, J. H. C. (1999). A triangular relationship between leaf size and seed size among woody species: Allometry, ontogeny, ecology and taxonomy. Oecologia, 118(2), 248–255. https://doi.org/10.1007/s004420050725
Cornwell, W. K., Schwilk, D. W., & Ackerly, D. D. (2006). A trait-based test for habitat filtering: Convex hull volume. Ecology, 87(6), 1465–1471. https://doi.org/10.1890/0012-9658(2006)87[1465:ATTFHF]2.0.CO;2
Dechamps, C., Elvinger, N., Meerts, P., Lefebvre, C., Escarré, J., Colling, G., & Noret, N. (2011). Life history traits of the pseudometallophyte Thlaspi caerulescens in natural populations from Northern Europe. Plant Biology, 13, 125–135. https://doi.org/10.1111/j.1438-8677.2010.00387.x
Dechamps, C., Lefèbvre, C., Noret, N., & Meerts, P. (2007). Reaction norms of life history traits in response to zinc in Thlaspi caerulescens from metalliferous and nonmetalliferous sites. New Phytologist, 173(1), 191–198. https://doi.org/10.1111/j.1469-8137.2006.01884.x
Delhaye, G., Hardy, O. J., Séleck, M., Ilunga wa Ilunga, E., Mahy, G., & Meerts, P. (2020). Plant community assembly along a natural metal gradient in central Africa: Functional and phylogenetic approach. Journal of Vegetation Science, 31, 151–161. https://doi.org/10.1111/jvs.12829
Delhaye, G., Violle, C., Séleck, M., Ilunga wa Ilunga, E., Daubie, I., Mahy, G., & Meerts, P. (2016). Community variation in plant traits along copper and cobalt gradients. Journal of Vegetation Science, 27(4), 854–864. https://doi.org/10.1111/jvs.12394
Díaz, S., Kattge, J., Cornelissen, J. H. C., Wright, I. J., Lavorel, S., Dray, S., … Gorné, L. D. (2016). The global spectrum of plant form and function. Nature, 529(7585), 167–171. https://doi.org/10.1038/nature16489
Dwyer, J. M., & Laughlin, D. C. (2017). Constraints on trait combinations explain climatic drivers of biodiversity: The importance of trait covariance in community assembly. Ecology Letters, 20(7), 872–882. https://doi.org/10.1111/ele.12781
Ernst, W. H. O., Verkleij, J. A. C., & Schat, H. (1992). Metal tolerance in plants. Acta Botanica Neerlandica, 41(3), 229–248. https://doi.org/10.1111/j.1438-8677.1992.tb01332.x
Faucon, M.-P., Le Stradic, S., Boisson, S., wa Ilunga, E. I., Séleck, M., Lange, B., … Mahy, G. (2016). Implication of plant-soil relationships for conservation and restoration of copper-cobalt ecosystems. Plant and Soil, 403(1–2), 153–165. https://doi.org/10.1007/s11104-015-2745-5
Funk, J. L., & Cornwell, W. K. (2013). Leaf traits within communities: Context may affect the mapping of traits to function. Ecology, 94(9), 1893–1897. https://doi.org/10.1890/12-1602.1
Gianoli, E. (2004). Plasticity of traits and correlations in two populations of Convolvulus arvensis (Convolvulaceae) differing in environmental heterogeneity. International Journal of Plant Sciences, 165(5), 825–832. https://doi.org/10.1086/422050
guildelhaye. (2020). Data from: guildelhaye/FE-2020-00076: FE-2020-00076 (Version data). Zenodo, https://doi.org/10.5281/zenodo.3736538
Hodgson, J. G., Santini, B. A., Montserrat Marti, G., Royo Pla, F., Jones, G., Bogaard, A., … Warham, G. (2017). Trade-offs between seed and leaf size (seed–phytomer–leaf theory): Functional glue linking regenerative with life history strategies … and taxonomy with ecology? Annals of Botany, 120(5), 633–652. https://doi.org/10.1093/aob/mcx084
Kraft, N. J., & Ackerly, D. D. (2013). The assembly of plant communities. In R. Monson (Ed.), Ecology and the environment (pp. 1–19). New York, NY: Springer. https://doi.org/10.1007/978-1-4614-7612-2_1-5
Kraft, N. J., Godoy, O., & Levine, J. M. (2015). Plant functional traits and the multidimensional nature of species coexistence. Proceedings of the National Academy of Sciences of the Unites States of America, 112(3), 797–802. https://doi.org/10.1073/pnas.1413650112
Laliberté, E., & Legendre, P. (2010). A distance-based framework for measuring functional diversity from multiple traits. Ecology, 91, 1299–1305. https://doi.org/10.1890/08-2244.1
Lange, B., van der Ent, A., Baker, A. J. M., Echevarria, G., Mahy, G., Malaisse, F., … Faucon, M.-P. (2017). Copper and cobalt accumulation in plants: A critical assessment of the current state of knowledge. New Phytologist, 213(2), 537–551. https://doi.org/10.1111/nph.14175
Laughlin, D. C. (2014). The intrinsic dimensionality of plant traits and its relevance to community assembly. Journal of Ecology, 102(1), 186–193. https://doi.org/10.1111/1365-2745.12187
Laughlin, D. C., Leppert, J. J., Moore, M. M., & Sieg, C. H. (2010). A multi-trait test of the leaf-height-seed plant strategy scheme with 133 species from a pine forest flora. Functional Ecology, 24(3), 493–501. https://doi.org/10.1111/j.1365-2435.2009.01672.x
Laughlin, D. C., Lusk, C. H., Bellingham, P. J., Burslem, D. F., Simpson, A. H., & Kramer-Walter, K. R. (2017). Intraspecific trait variation can weaken interspecific trait correlations when assessing the whole-plant economic spectrum. Ecology and Evolution, 7(21), 8936–8949. https://doi.org/10.1002/ece3.3447
Laughlin, D. C., & Messier, J. (2015). Fitness of multidimensional phenotypes in dynamic adaptive landscapes. Trends in Ecology & Evolution, 30(8), 487–496. https://doi.org/10.1016/j.tree.2015.06.003
Li, L. E., McCormack, M. L., Ma, C., Kong, D., Zhang, Q., Chen, X., … Guo, D. (2015). Leaf economics and hydraulic traits are decoupled in five species-rich tropical-subtropical forests. Ecology Letters, 18(9), 899–906. https://doi.org/10.1111/ele.12466
Mason, N. W., de Bello, F., Mouillot, D., Pavoine, S., & Dray, S. (2013). A guide for using functional diversity indices to reveal changes in assembly processes along ecological gradients. Journal of Vegetation Science, 24, 794–806. https://doi.org/10.1111/jvs.12013
Messier, J., Lechowicz, M. J., McGill, B. J., Violle, C., & Enquist, B. J. (2017). Interspecific integration of trait dimensions at local scales: The plant phenotype as an integrated network. Journal of Ecology, 105(6), 1775–1790. https://doi.org/10.1111/1365-2745.12755
Messier, J., McGill, B. J., Enquist, B. J., & Lechowicz, M. J. (2017). Trait variation and integration across scales: Is the leaf economic spectrum present at local scales? Ecography, 40(6), 685–697. https://doi.org/10.1111/ecog.02006
Messier, J., McGill, B. J., & Lechowicz, M. J. (2010). How do traits vary across ecological scales? A case for trait-based ecology. Ecology Letters, 13(7), 838–848. https://doi.org/10.1111/j.1461-0248.2010.01476.x
Messier, J., Violle, C., Enquist, B. J., Lechowicz, M. J., & McGill, B. J. (2018). Similarities and differences in intrapopulation trait correlations of co-occurring tree species: Consistent water-use relationships amid widely different correlation patterns. American Journal of Botany, 105(9), 1477–1490. https://doi.org/10.1002/ajb2.1146
Mohiley, A., Tielbörger, K., Seifan, M., & Gruntman, M. (2020). The role of biotic interactions in determining metal hyperaccumulation in plants. Functional Ecology, 34(3), 658–668. https://doi.org/10.1111/1365-2435.13502
Mouchet, M. A., Villéger, S., Mason, N. W., & Mouillot, D. (2010). Functional diversity measures: An overview of their redundancy and their ability to discriminate community assembly rules. Functional Ecology, 24(4), 867–876. https://doi.org/10.1111/j.1365-2435.2010.01695.x
Pakeman, R. J., & Quested, H. M. (2007). Sampling plant functional traits: What proportion of the species need to be measured? Applied Vegetation Science, 10(1), 91–96. https://doi.org/10.1111/j.1654-109X.2007.tb00507.x
Pérez-Harguindeguy, N., Díaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P., … Cornelissen, J. H. C. (2013). New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 61, 167–234. https://doi.org/10.1071/BT12225
Pigliucci, M., & Preston, K. (Eds.). (2004). Phenotypic integration: Studying the ecology and evolution of complex phenotypes. Oxford, UK: Oxford University Press.
Pollard, A. J., & Baker, A. J. (1997). Deterrence of herbivory by zinc hyperaccumulation in Thlaspi caerulescens (Brassicaceae). New Phytologist, 135(4), 655–658. https://doi.org/10.1046/j.1469-8137.1997.00689.x
R Core Team. (2019). R foundation for statistical computing. Vienna, Austria. Retrieved from http://www.R-project.org/
Read, Q. D., Moorhead, L. C., Swenson, N. G., Bailey, J. K., & Sanders, N. J. (2014). Convergent effects of elevation on functional leaf traits within and among species. Functional Ecology, 28(1), 37–45. https://doi.org/10.1111/1365-2435.12162
Reeves, R. D., Baker, A. J., Jaffré, T., Erskine, P. D., Echevarria, G., & van der Ent, A. (2018). A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytologist, 218(2), 407–411. https://doi.org/10.1111/nph.14907
Reich, P. B. (2014). The world-wide ‘fast–slow’ plant economics spectrum: A traits manifesto. Journal of Ecology, 102(2), 275–301. https://doi.org/10.1111/1365-2745.12211
Rosas, T., Mencuccini, M., Barba, J., Cochard, H., Saura-Mas, S., & Martínez-Vilalta, J. (2019). Adjustments and coordination of hydraulic, leaf and stem traits along a water availability gradient. New Phytologist, 223(2), 632–646. https://doi.org/10.1111/nph.15684
Séleck, M., Bizoux, J.-P., Colinet, G., Faucon, M.-P., Guillaume, A., Meerts, P., … Mahy, G. (2013). Chemical soil factors influencing plant assemblages along copper-cobalt gradients: Implications for conservation and restoration. Plant and Soil, 373(1–2), 455–469. https://doi.org/10.1007/s11104-013-1819-5
Šidák, Z. (1967). Rectangular confidence regions for the means of multivariate normal distributions. Journal of the American Statistical Association, 62(318), 626–633. https://doi.org/10.1080/01621459.1967.10482935
Silva, J. L., Souza, A. F., Caliman, A., Voigt, E. L., & Lichston, J. E. (2018). Weak whole-plant trait coordination in a seasonally dry South American stressful environment. Ecology and Evolution, 8(1), 4–12. https://doi.org/10.1002/ece3.3547
Tilman, D. (1988). Plant strategies and the dynamics and structure of plant communities (Monograph in Population Biology No. 26). Princeton, NJ: Princeton University Press.
Torices, R., & Muñoz-Pajares, A. J. (2015). PHENIX: An R package to estimate a size-controlled phenotypic integration index. Applications in Plant Sciences, 3(5), 1400104. https://doi.org/10.3732/apps.1400104
Villéger, S., Mason, N. W., & Mouillot, D. (2008). New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology, 89, 2290–2301. https://doi.org/10.1890/07-1206.1
Violle, C., Navas, M. L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I., & Garnier, E. (2007). Let the concept of trait be functional! Oikos, 116(5), 882–892. https://doi.org/10.1111/j.0030-1299.2007.15559.x
Violle, C., Thuiller, W., Mouquet, N., Munoz, F., Kraft, N. J. B., Cadotte, M. W., … Mouillot, D. (2017). Functional rarity: The ecology of outliers. Trends in Ecology & Evolution, 32(5), 356–367. https://doi.org/10.1016/j.tree.2017.02.002
Waitt, D. E., & Levin, D. A. (1993). Phenotypic integration and plastic correlations in Phlox drummondii (Polemoniaceae). American Journal of Botany, 80(10), 1224–1233. https://doi.org/10.1002/j.1537-2197.1993.tb15356.x
Webb, C. T., Hoeting, J. A., Ames, G. M., Pyne, M. I., & LeRoy Poff, N. (2010). A structured and dynamic framework to advance traits-based theory and prediction in ecology. Ecology Letters, 13(3), 267–283. https://doi.org/10.1111/j.1461-0248.2010.01444.x
Westoby, M. (1998). A leaf-height-seed (LHS) plant ecology strategy scheme. Plant and Soil, 199(2), 213–227. https://doi.org/10.1023/A:1004327224729
Wilson, P. J., Thompson, K. E. N., & Hodgson, J. G. (1999). Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. New Phytologist, 143(1), 155–162. https://doi.org/10.1046/j.1469-8137.1999.00427.x
Wright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers, F., … Villar, R. (2004). The worldwide leaf economics spectrum. Nature, 428(6985), 821–827. https://doi.org/10.1038/nature02403
Wright, J. P., & Sutton-Grier, A. (2012). Does the leaf economic spectrum hold within local species pools across varying environmental conditions? Functional Ecology, 26(6), 1390–1398. https://doi.org/10.1111/1365-2435.12001
Zimmermann, J., Higgins, S. I., Grimm, V., Hoffmann, J., & Linstädter, A. (2010). Grass mortality in semi-arid savanna: The role of fire, competition and self-shading. Perspectives in Plant Ecology, Evolution and Systematics, 12(1), 1–8. https://doi.org/10.1016/j.ppees.2009.09.003