Acher F., Goudet C., (2015). Therapeutic potential of group III metabotropic glutamate receptor ligands in pain. Curr. Opin. Pharmacol. 20 64–72. 10.1016/j.coph.2014.11.007 25498980.
Chiechio S., (2016). Modulation of Chronic Pain by Metabotropic Glutamate Receptors, Advances in Pharmacology 1st Edn. New York, NY: Elsevier Inc.
Chruścicka B., Burnat G., Brański P., Chorobik P., Lenda T., Marciniak M., (2015). Tetracycline-based system for controlled inducible expression of group III metabotropic glutamate receptors. J. Biomol. Screen. 20 350–358. 10.1177/1087057114559183 25394730.
Conn P. J., Lindsley C. W., Jones C. K., (2009). Activation of metabotropic glutamate receptors as a novel approach for the treatment of schizophrenia. Trends Pharmacol. Sci. 30 25–31. 10.1016/j.tips.2008.10.006.Activation.
Czyrak A., Maækowiak M., Chocyk A., Fijał K., Gadek-Michalska A., Wedzony K., (2003). 8-OHDPAT-induced disruption of prepulse inhibition in rats is attenuated by prolonged corticosterone treatment. Neuropsychopharmacology 28 1300–1310. 10.1038/sj.npp.1300165 12700680.
Dalezios Y., Luján R., Shigemoto R., Roberts J. D. B., Somogyi P., (2002). Enrichment of mGluR7a in the presynaptic active zones of GABAergic and non-GABAergic terminals on interneurons in the rat somatosensory cortex. Cereb. cortex 12 961–974. 10.1093/cercor/12.9.961 12183395.
De Gregorio D., Comai S., Posa L., Gobbi G., (2016a). D-lysergic Acid Diethylamide (LSD) as a model of psychosis: mechanism of action and pharmacology. Int. J. Mol. Sci. 17 1–20. 10.3390/ijms17111953 27886063.
De Gregorio D., Posa L., Ochoa-Sanchez R., McLaughlin R., Maione S., Comai S., (2016b). The hallucinogen D-lysergic diethylamide (LSD) decreases dopamine firing activity through 5-HT1A, D2and TAAR1receptors. Pharmacol. Res. 113 81–91. 10.1016/j.phrs.2016.08.022 27544651.
de Moura Linck V., Herrmann A. P., Goerck G. C., Iwu M. M., Okunji C. O., Leal M. B., (2008). The putative antipsychotic alstonine reverses social interaction withdrawal in mice. Prog. Neuropsychopharmacol. Biol. Psychiatry 32 1449–1452. 10.1016/j.pnpbp.2008.04.013 18539376.
Ganda C., Schwab S. G., Amir N., Heriani H., Irmansyah I., Kusumawardhani A., (2009). A family-based association study of DNA sequence variants in GRM7 with schizophrenia in an Indonesian population. Int. J. Neuropsychopharmacol. 12:1283. 10.1017/S1461145709990356 19638256.
Geyer M. A., Vollenweider F. X., (2008). Serotonin research: Contributions to understanding psychoses. Trends Pharmacol. Sci. 29 445–453. 10.1016/j.tips.2008.06.006 19086254.
González-Maeso J., Ang R., Yuen T., Chan P., Weisstaub N. V., López-Giménez J. F., (2008). Identification of a Novel Serotonin/Glutamate Receptor Complex Implicated in Psychosis. Nature 452 93–97. 10.1038/nature06612.Identification.
Grayson B., Leger M., Piercy C., Adamson L., Harte M., Neill J. C., (2015). Assessment of disease-related cognitive impairments using the novel object recognition (NOR) task in rodents. Behav. Brain Res. 285 176–193. 10.1016/j.bbr.2014.10.025 25447293.
Gu Z., Cheng J., Zhong P., Qin L., Liu W., Yan Z., (2014). Aβ Selectively Impairs mGluR7 Modulation of NMDA Signaling in Basal Forebrain Cholinergic Neurons: Implication in Alzheimer’s Disease. J. Neurosci. 34 13614–13628. 10.1523/JNEUROSCI.1204-14.2014.
Hikichi H., Murai T., Okuda S., Maehara S., Satow A., Ise S., (2010). Effects of a novel metabotropic glutamate receptor 7 negative allosteric modulator, 6-(4-methoxyphenyl)-5-methyl-3-pyridin-4-ylisoxazonolo[4,5-c]pyridin-4(5H)-one (MMPIP), on the central nervous system in rodents. Eur. J. Pharmacol. 639 106–114. 10.1016/j.ejphar.2009.08.047 20371227.
Jacobs B. L., Trulson M. E., (1979). Mechanisms of action of LSD. Am. Sci. 67 396–404.
Kalinichev M., Rouillier M., Girard F., Royer-Urios I., Bournique B., Finn T., (2013). ADX71743, a Potent and Selective Negative Allosteric Modulator of Metabotropic Glutamate Receptor 7: In vitro and In vivo Characterization. J. Pharmacol. Exp. Ther. 344 624–636. 10.1124/jpet.112.200915 23257312.
Kinoshita A., Shigemoto R., Ohishi H., Mizuno N., (1998). Immunohistochemical Localization of Metabotropic Glutamate Receptors, mGluR7a and mGluR7b, in the Central Nervous System of the Adult Rat and Mouse: A Light and Electron Microscopic Study. J. Comp. Neurol. 352 332–352. 10.1002/(SICI)1096-9861(19980413)393:3<332::AID-CNE6>3.0.CO;2-2 9548554.
Kosinski C. M., Risso Bradley S., Conn P. J., Levey I., Landwehrmeyer G. B., Penney J. B., (1999). Localization of metabotropic glutamate receptor 7 mRNA and mGluR7a protein in the rat basal ganglia. J. Comp. Neurol 415 266–284. 10.1002/(SICI)1096-9861(19991213)415:2<266::AID-CNE9>3.0.CO;2-7 10545164.
Li W., Ju K., Li Z., He K., Chen J., Wang Q., (2016). Significant association of GRM7 and GRM8 genes with schizophrenia and major depressive disorder in the Han Chinese population. Eur. Neuropsychopharmacol. 26 136–146. 10.1016/j.euroneuro.2015.05.004 26655190.
Litim N., Morissette M., Di Paolo T., (2017). Metabotropic glutamate receptors as therapeutic targets in Parkinson’s disease: An update from the last 5 years of research. Neuropharmacology 115 166–179. 10.1016/j.neuropharm.2016.03.036 27055772.
Marona-Lewicka D., Thisted R. A., Nichols D. E., (2005). Distinct temporal phases in the behavioral pharmacology of LSD: Dopamine D2receptor-mediated effects in the rat and implications for psychosis. Psychopharmacology. 180 427–435. 10.1007/s00213-005-2183-9 15723230.
Mitsukawa K., Mombereau C., Lötscher E., Uzunov D. P., Van Der Putten H., Flor P. J., (2006). Metabotropic glutamate receptor subtype 7 ablation causes dysregulation of the HPA axis and increases hippocampal BDNF protein levels: Implications for stress-related psychiatric disorders. Neuropsychopharmacology 31 1112–1122. 10.1038/sj.npp.1300926 16237391.
Mitsukawa K., Yamamoto R., Ofner S., Nozulak J., Pescott O., Lukic S., (2005). A selective metabotropic glutamate receptor 7 agonist: activation of receptor signaling via an allosteric site modulates stress parameters in vivo. Proc. Natl. Acad. Sci. U. S. A. 102 18712–18717. 10.1073/pnas.0508063102 16339898.
Nickols H., Conn P. J., (2014). Development of allosteric modulators of GPCRs for treatment of CNS disorders. Neurobiol. Dis. 61 55–71. 10.1016/j.nbd.2013.09.013 24076101.
Nilsson M., Hansson S., Carlsson A., Carlsson M. L., (2007). Differential effects of the N-methyl-d-aspartate receptor antagonist MK-801 on different stages of object recognition memory in mice. Neuroscience 149 123–130. 10.1016/j.neuroscience.2007.07.019 17826918.
Niswender C. M., Conn P. J., (2010). Metabotropic Glutamate Receptors: Physiology, Pharmacology, and Disease. Annu. Rev. Pharmacol. Toxicol. 50 295–322. 10.1146/annurev.pharmtox.011008.145533.Metabotropic.
Niswender C. M., Johnson K. A., Miller N. R., Ayala J. E., Luo Q., Williams R., (2010). Context-Dependent Pharmacology Exhibited by Negative Allosteric Modulators of Metabotropic Glutamate Receptor 7. Mol. Pharmacol. 77 459–468. 10.1124/mol.109.058768 20026717.
Noda Y., Mamiya T., Furukawa H., Nabeshima T., (1997). Effects of antidepressants on phencyclidine-induced enhancement of immobility in a forced swimming test in mice. Eur. J. Pharmacol. 324 135–140. 10.1016/S0014-2999(97)00067-8 9145763.
Noda Y., Yamada K., Furukawa H., Nabeshima T., (1995). Enhancement of immobility in a forced swimming test by subacute or repeated treatment with phencyclidine: a new model of schizophrenia. Br. J. Pharmacol. 116 2531–2537. 10.1111/j.1476-5381.1995.tb15106.x.
Ohishi H., Akazawa C., Shigemoto R., Nakanishi S., Mizuno N., (1995). Distributions of the mRNAs for L-2-amino-4- phosphonobutyrate-sensitive metabotropic glutamate receptors, mGluR4 and mGluR7, in the rat brain. J. Comp. Neurol. 360 555–570. 10.1002/cne.903600402 8801249.
Ohtsuki T., Koga M., Ishiguro H., Horiuchi Y., Arai M., Niizato K., (2008). A polymorphism of the metabotropic glutamate receptor mGluR7 (GRM7) gene is associated with schizophrenia. Schizophr. Res. 101 9–16. 10.1016/j.schres.2008.01.027 18329248.
Palazzo E., Marabese I., de Novellis V., Rossi F., Maione S., (2016). Metabotropic Glutamate Receptor 7: From Synaptic Function to Therapeutic Implications. Curr. Neuropharmacol. 14 504–513. 10.2174/1570159X13666150716165323 27306064.
Palazzo E., Romano R., Luongo L., Boccella S., De Gregorio D., Giordano M. E., (2015). MMPIP, an mGluR7-selective negative allosteric modulator, alleviates pain and normalizes affective and cognitive behavior in neuropathic mice. Pain 156 1060–1073. 10.1097/j.pain.0000000000000150 25760470.
Palucha A., Klak K., Branski P., Van Der Putten H., Flor P. J., Pilc A., (2007). Activation of the mGlu7 receptor elicits antidepressant-like effects in mice. Psychopharmacology. 194 555–562. 10.1007/s00213-007-0856-2 17622518.
Paxinos G., Franklin K., (2012). Mouse Brain in Stereotaxic Coordinates 4th Edn. Cambridge, MA: Academic Press.
Reed C. W., McGowan K. M., Spearing P. K., Stansley B. J., Roenfanz H. F., Engers D. W., (2017). VU6010608, a Novel mGlu7NAM from a Series of N- (2-(1H-1,2,4-Triazol-1-yl)-5-(trifluoromethoxy)phenyl)benzamides. ACS Med. Chem. Lett 8 1326–1330. 10.1021/acsmedchemlett.7b00429 29259756.
Sansig G., Bushell T. J., Clarke V. R., Rozov A., Burnashev N., Portet C., (2001). Increased seizure susceptibility in mice lacking metabotropic glutamate receptor 7. J. Neurosci. 21 8734–8745. 10.1523/JNEUROSCI.21-22-08734.2001.
Schoepp D. D., (2001). Unveiling the functions of presynaptic metabotropic glutamate receptors in the central nervous system. J Pharmacol. Exp. Ther 299 12–20. 11561058.
Sławińska A., Wierońska J. M., Stachowicz K., Pałucha-Poniewiera A., Uberti M. A., Bacolod M. A., (2013). Anxiolytic- but not antidepressant-like activity of Lu AF21934, a novel, selective positive allosteric modulator of the mGlu4 receptor. Neuropharmacology 66 225–235. 10.1016/j.neuropharm.2012.05.001 22634361.
Stachowicz K., Brański P., Kłak K., van der Putten H., Cryan J. F., Flor P. J., (2008). Selective activation of metabotropic G-protein-coupled glutamate 7 receptor elicits anxiolytic-like effects in mice by modulating GABAergic neurotransmission. Behav. Pharmacol. 19 597–603. 10.1097/FBP.0b013e32830cd839 18690114.
Sukoff Rizzo S. J., Leonard S. K., Gilbert A., Dollings P., Smith D. L., Zhang M.-Y., (2011). The Metabotropic Glutamate Receptor 7 Allosteric Modulator AMN082: A Monoaminergic Agent in Disguise? J. Pharmacol. Exp. Ther. 338 345–352. 10.1124/jpet.110.177378 21508084.
Summa M., Di Prisco S., Grilli M., Usai C., Marchi M., Pittaluga A., (2013). Presynaptic mGlu7 receptors control GABA release in mouse hippocampus. Neuropharmacology 66 215–224. 10.1016/j.neuropharm.2012.04.020 22564442.
Suzuki G., Tsukamoto N., Fushiki H., Kawagishi A., Nakamura M., Kurihara H., (2007). In vitro Pharmacological Characterization of Novel Isoxazolopyridone Derivatives as Allosteric Metabotropic Glutamate Receptor 7 Antagonists. J. Pharmacol. Exp. Ther. 323 147–156. 10.1124/jpet.107.124701 17609420.
Swanson C. J., Bures M., Johnson M. P., Linden A.-M., Monn J. A., Schoepp D. D., (2005). Metabotropic glutamate receptors as novel targets for anxiety and stress disorders. Nat. Rev. Drug Discov. 4 131–144. 10.1038/nrd1630 15665858.
Tokarski K., Bobula B., Kusek M., Hess G., (2011). The 5-HT(7) receptor antagonist SB 269970 counteracts restraint stress-induced attenuation of long-term potentiation in rat frontal cortex. J Physiol Pharmacol. 62 663–667. 22314569.
Vollenweider F. X., Kometer M., (2010). The neurobiology of psychedelic drugs: Implications for the treatment of mood disorders. Nat. Rev. Neurosci. 11 642–651. 10.1038/nrn2884 20717121.
Wierońska J. M., Kłeczek N., Woźniak M., Gruca P., Łasoń-Tyburkiewicz M., Papp M., (2015a). mGlu5-GABAB interplay in animal models of positive, negative and cognitive symptoms of schizophrenia. Neurochem. Int. 88 97–109. 10.1016/j.neuint.2015.03.010 25863284.
Wierońska J. M., Sławińska A., Łasoń-Tyburkiewicz M., Gruca P., Papp M., Zorn S. H., (2015b). The antipsychotic-like effects in rodents of the positive allosteric modulator Lu AF21934 involve 5-HT1A receptor signaling: Mechanistic studies. Psychopharmacology (Berl). 232 259–273. 10.1007/s00213-014-3657-4 25012236.
Wierońska J. M., Sławińska A., Stachowicz K., Łasoń-Tyburkiewicz M., Gruca P., Papp M., (2013). The reversal of cognitive, but not negative or positive symptoms of schizophrenia, by the mGlu2/3 receptor agonist, LY379268, is 5-HT1A dependent. Behav. Brain Res. 256 298–304. 10.1016/j.bbr.2013.08.007 23948211.
Wierońska J. M., Stachowicz K., Acher F., Lech T., Pilc A., (2012). Opposing efficacy of group III mGlu receptor activators, LSP1-2111 and AMN082, in animal models of positive symptoms of schizophrenia. Psychopharmacology (Berl). 220 481–494. 10.1007/s00213-011-2502-2 21952670.
Woźniak M., Acher F., Marciniak M., Łasoń-Tyburkiewicz M., Gruca P., Papp M., (2016a). Involvement of GABAB Receptor Signaling in Antipsychotic-like Action of the Novel Orthosteric Agonist of the mGlu4 Receptor, LSP4-2022. Curr. Neuropharmacol. 14 413–426. 10.2174/1570159X13666150516000630 26769224.
Woźniak M., Gołembiowska K., Noworyta-Sokołowska K., Acher F., Cieślik P., Kusek M., (2016b). Neurochemical and behavioral studies on the 5-HT1A-dependent antipsychotic action of the mGlu4 receptor agonist LSP4-2022. Neuropharmacology 115 149–165. 10.1016/j.neuropharm.2016.06.025 27465045.
Wright R. A., Arnold M. B., Wheeler W. J., Ornstein P. L., Schoepp D. D., (2000). Binding of [3H](2S,1’S,2’S)-2-(9-xanthylmethyl)-2-(2’-carboxycyclopropyl) glycine ([3H]LY341495) to cell membranes expressing recombinant human group III metabotropic glutamate receptor subtypes. Naunyn. Schmiedebergs. Arch. Pharmacol 362 546–554. 10.1007/s002100000305.