Hedlund, P. B. The 5-HT7 receptor and disorders of the nervous system: an overview. Psychopharmacology 206, 345-354, doi:10.1007/s00213-009-1626-0 (2009).
Hoyer, D., Hannon, J. P. & Martin, G. R. Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol. Biochem. Behav. 71, 533-554, doi:10.1016/S0091-3057(01)00746-8 (2002).
Ruat, M. et al. Molecular cloning, characterization, and localization of a high-affinity serotonin receptor (5-HT7) activating cAMP formation. Proc. Natl. Acad. Sci. USA 90, 8547-8551, doi:10.1073/pnas.90.18.8547 (1993).
Lovenberg, T. W. et al. A novel adenylyl cyclase-activating serotonin receptor (5-HT7) implicated in the regulation of mammalian circadian rhythms. Neuron. 11, 449-458, doi:10.1016/0896-6273(93)90149-L (1993).
Kvachnina, E. et al. 5-HT7 receptor is coupled to Ga subunits of heterotrimeric G12-protein to regulate gene transcription and neuronal morphology. J. Neurosci. 25, 7821-7830, doi:10.1523/JNEUROSCI.1790-05.2005 (2005).
Bard, J. A. et al. Cloning of a novel human serotonin receptor (5-HT7) positively linked to adenylate cyclase. J. Biol. Chem. 268, 23422-23426 (1993).
Hedlund, P. B. et al. LP-211 is a brain penetrant selective agonist for the serotonin 5-HT7 receptor. Neurosci. Lett. 481, 12-16, doi:10.1016/j.neulet.2010.06.036 (2010).
Terron, J. A. & Falcon-Neri, A. Br. Pharmacological evidence for the 5-HT7 receptor mediating smooth muscle relaxation in canine cerebral arteries. J. Pharmacol 127, 609-616, doi:10.1038/sj.bjp.0702580 (1999).
Roberts, A. J. et al. Mice lacking 5-HT7 receptors show specific impairments in contextual learning. Eur. J. Neurosci. 19, 1913-1922, doi:10.1111/j.1460-9568.2004.03288.x (2004).
Gasbarri, A., Cifariello, A., Pompili, A. & Meneses, A. Effect of 5-HT7 antagonist SB-269970 in the modulation of working and reference memory in the rat. Behav. Brain Res. 195, 164-170, doi:10.1016/j.bbr.2007.12.020 (2008).
Eriksson, T. M., Golkar, A., Ekström, J. C., Svenningsson, P. & Ögren, S. O. 5-HT7 receptor stimulation by 8-OH-DPAT counteracts the impairing effects of 5-HT1A receptor stimulation on contextual learning in mice. Eur. J. Pharmacol. 596, 107-110, doi:10.1016/j. ejphar.2008.08.026 (2008).
Sarkisyan, G. & Hedlund, P. B. The 5-HT7 receptor is involved in allocentric spatial memory information processing. Behav. Brain Res. 202, 26-31, doi:10.1016/j.bbr.2009.03.011 (2009).
Meneses, A. et al. The effects of the 5-HT6 receptor agonist EMD and the 5-HT7 receptor agonist AS19 on memory formation. Behav. Brain Res. 195, 112-119, doi:10.1016/j.bbr.2007.11.023 (2008).
Hedlund, P. B. & Sutcliffe, J. G. Functional, molecular and pharmacological advances in 5-HT7 receptor research. Trends Pharmacol. Sci. 25, 481-486, doi:10.1016/j.tips.2004.07.002 (2004).
Mahe, C. et al. Serotonin 5-HT7 receptors coupled to induction of interleukin-6 in human microglial MC-3 cells. Neuropharmacology 49, 40-47, doi:10.1016/j.neuropharm.2005.01.025 (2005).
Dean, B., Pavey, G., Thomas, D. & Scarr, E. Cortical serotonin 7, 1D and 1F receptors: effects of schizophrenia, suicide and antipsychotic drug treatment. Schizophr. Res. 88, 265-267, doi:10.1016/j.schres.2006.07.003 (2006).
Rocha-Gonzalez, H. I., Meneses, A., Carlton, S. M. & Granados-Soto, V. Pronociceptive role of peripheral and spinal 5-HT7 receptors in the formalin test. Pain 117, 182-192, doi:10.1016/j.pain.2005.06.011 (2005).
Matthys, A., Haegeman, G., van Craenenbroeck, K. & Vanhoenacker, P. Role of the 5-HT7 receptor in the central nervous system: from current status to future perspectives. Mol. Neurobiol. 43, 228-253, doi:10.1007/s12035-011-8175-3 (2011).
Monsma, F. J., Shen, Y., Ward, R. P., Hamblin, M. W. & Sibley, D. R Cloning and expression of a novel serotonin receptor of high affinity for tricyclic psychotropic drugs. Mol. Pharmacol. 43, 320-327 (1993).
Mullins, U. L., Gianutsos, G. & Eison, A. S. Effects of antidepressants on 5-HT7 receptor regulation in the rat hypothalamus. Neuropsychopharmacol 21, 352-367, doi:10.1016/S0893-133X(99)00041-X (1999).
Wesolowska, A., Nikiforuk, A., Stachowicz, K. & Tatarczynska, E. Effect of the selective 5-HT7 receptor antagonist SB 269970 in animal models of anxiety and depression. Neuropharmacology 51, 578-586, doi:10.1016/j.neuropharm.2006.04.017 (2006).
Wesolowska, A., Tatarczynska, E., Nikiforuk, A. & Chojnacka-Wojcik, E. Enhancement of the anti-immobility action of antidepressants by a selective 5-HT7 receptor antagonist in the forced swimming test in mice. Eur. J. Pharmacol. 555, 43-47, doi:10.1016/j.ejphar.2006.10.001 (2007).
Pouzet, B., Didriksen, M. & Arnt, J. Effects of the 5-HT7 receptor antagonist SB-258741 in animal model for schizophrenia. Pharmacol. Biochem. Behav. 71, 655-665, doi:10.1016/S0091-3057(01)00744-4 (2002).
Semenova, S., Geyer, M. A., Sutcliffe, J. G., Markou, A. & Hedlund, P. B. Inactivation of the 5-HT7 receptor partially blocks phencyclidine-induced disruption of prepulse inhibition. Biol. Psychiatry. 63, 98-105, doi:10.1016/j.biopsych.2006.12.011 (2008).
Gasbarri, A. & Pompili, A. Serotonergic 5-HT7 receptors and cognition. Rev. Neurosci 25, 311-323, doi:10.1515/revneuro-2013-0066 (2014).
Sanin, A. et al. 5-Aryl substituted (S)-2-(dimethylamino)-tetralins novel serotonin 5-HT7 receptor ligands. In: Proceedings of the 14th Camerino-Noord Symposium. Ongoing Progress in the Receptor Chemistry, p. 27 (2004).
Hagan, J. J. et al. Characterization of SB-269970-A, a selective 5-HT7 receptor antagonist. Br. J. Pharmacol 130, 539-548, doi:10.1038/sj.bjp.0703357 (2000).
Stoll, W. & Schweiz, A. Lyseric acid diethylamide, a hallucinogen from the ergot group. Arch. Neurol. Psychiatr 60, 279 (1947).
Leopoldo, M. et al. Structure-activity relationship study on N-(1,2,3,4-tetrahydronaphthalen-1-yl)-4-aryl-1piperazinehexanamides, a class of 5-HT7 receptor agents. J. Med. Chem. 50, 4214-4221, doi:10.1021/jm070487n (2007).
Leopoldo, M. et al. Structure-affinity relationship study on N-(1,2,3,4-tetrahydronaphthalen-1-yl)4-aryl-1-piperazinealkylamides, a new class of 5-hydroxytryptamine7 receptor agents. J. Med. Chem. 47, 6616-6624, doi:10.1021/jm049702f (2004).
Leopoldo, M. et al. Structural modifications of N-(1,2,3,4-tetrahydronaphthalen-1-yl)-4-aryl-1-piperazinehexanamides: Influence on lipophilicity and 5-HT7 receptor activity. Part III. J. Med. Chem. 51, 5813-5822, doi:10.1021/jm800615e (2008).
Brenchat, A. et al. 5-HT7 receptor activation inhibits mechanical hypersensitivity secondary capsaicin sensitization in mice. Pain 141, 239-247, doi:10.1016/j.pain.2008.11.009 (2009).
Lacivita, E. et al. Structural modifications of the serotonin 5-HT7 receptor agonist N-(4-cyanophenylmethyl)-4-(2-biphenyl)-1-piperazinehexanamide (LP-211) to improve in vitro microsomal stability: A case study. Eur. J. Med. Chem. 120, 363-379, doi:10.1016/j.ejmech.2016.05.005 (2016).
Canese, R. et al. Persistent modification of forebrain networks and metabolism in rats following adolescent exposure to a 5-HT7 receptor agonist. Psychopharmacology (Berl) 232, 75-89, doi:10.1007/s00213-014-3639-6 (2015).
De Filippis, B. et al. Long-lasting beneficial effects of central serotonin receptor 7 stimulation in female mice modeling Rett syndrome. Front. Behav. Neurosci. 9, 86, doi:10.3389/fnbeh.2015.00086 (2015).
Costa, L. et al. Activation of 5-HT7 serotonin receptors reverses metabotropic glutamate receptor-mediated synaptic plasticity in wildtype and Fmr1 knockout mice, a model of Fragile X syndrome. Biol. Psychiatry 72, 924-933, doi:10.1016/j.biopsych.2012.06.008 (2012).
Di Pilato, P. et al. Selective agonists for serotonin 7 (5-HT7) receptor and their applications in preclinical models: an overview. Rev. Neurosci. 25, 401-414, doi:10.1515/revneuro-2014-0009 (2014).
Ladduwahetty, T. et al. A new class of selective, non-basic 5-HT2A receptor antagonists. Bioorg. Med. Chem. Lett. 16, 3201-3204, doi:10.1016/j.bmcl.2006.03.050 (2006).
Harris, R. N. 3rd et al. Highly potent, non-basic 5-HT6 ligands. Site mutagenesis evidence for a second binding mode at 5-HT6 for antagonism. Bioorg. Med. Chem. Lett. 20, 3436-3440, doi:10.1016/j.bmcl.2010.03.110 (2010).
Nugiel, D. A. et al. De Novo Design of a Picomolar Nonbasic 5-HT1B Receptor Antagonist. J. Med. Chem. 53, 1876-1880, doi:10.1021/jm901200t (2010).
Bento, A. P. et al. The ChEMBL bioactivity database: an update. Nucleic Acids Res 42, 1083-1090, doi:10.1093/nar/gkt1031 (2014).
Zhang, L., Peng, X. M., Damu, G. L. V., Geng, R. X. & Zhou, C. H. Comprehensive Review in Current Developments of Imidazole-Based Medicinal Chemistry. Med. Res. Rev. 34, 340-437, doi:10.1002/med.21290 (2014).
Van Leusen, A. M., Wildeman, J. & Oldenziel, O. H. Chemistry of sulfonylmethyl isocyanides. Base-induced cycloaddition of sulfonylmethyl isocyanides to carbon,nitrogen double bonds. Synthesis of 1,5-disubstituted and 1,4,5-trisubstituted imidazoles from aldimines and imidoyl chlorides. J. Org. Chem. 42, 1153-1159 (1977).
Dömling, A. & Ugi, I. Multicomponent Reactions with Isocyanides. Angew. Chem. 39, 3168-3210, doi:10.1002/ (ISSN)1521-3773 (2000).
Obach, R. S. Prediction of human clearance of twenty-nine drugs from hepatic microsomal intrinsic clearance data: An examination of in vitro half-life approach and nonspecific binding to microsomes. Drug Metab. Dispos. 27, 1350-1359 (1999).
Tiwari, A. K. et al. Design, synthesis and biological evaluation of small molecule-based PET radioligands for the 5-hydroxytryptamine 7 receptor. RSC Adv. 5, 19752-19759, doi:10.1039/C4RA15833D (2015).
Glennon, R. A. et al. [125I]-1-(2,5-Dimethoxy-4-iodophenyl)-2-aminopropane: An iodinated radioligand that specifically labels the agonist high-affinity state of 5-HT2 serotonin receptors. J. Med. Chem. 31, 5-7, doi:10.1021/jm00396a003 (1988).
Heim, R. Chemistry and allied sciences: Synthesis and pharmacology of potent 5-HT2A receptor agonists which have a partial N-2-methoxybenzyl structure. Ph.D. Dissertation, Free University of Berlin (2003).
Meneses, A. 5-HT7 receptor stimulation and blockade: a therapeutic paradox about memory formation and amnesia. Front. Behav. Neurosci. 8, 1-4, doi:10.3389/fnbeh.2014.00207 (2014).
Wager, T. T., Hou, X., Verhoest, P., Villalobos, R. & Moving, A. beyond rules: the development of a central nervous system multiparameter optimization (CNS MPO) approach to enable alignment of druglike properties. ACS Chem. Neurosci. 1, 435-449 (2010).
Isberg, V. et al. GPCRdb: an Information system for G protein-coupled receptors. Nucleic Acids Res 44, 356-364, doi:10.1093/nar/gkv1178 (2016).
Vermeulen, E. S., Schmidt, A. W., Sprouse, J. S., Wikstrom, H. V. & Grol, C. J. Characterization of the 5-HT7 receptor. Determination of the pharmacophore for 5-HT7 receptor agonism and CoMFA-based modeling of the agonist binding site. J. Med. Chem. 46, 5365-5374, doi:10.1021/jm030826m (2003).
Hansen, H. D. et al. Radiosynthesis and In Vivo Evaluation of Novel Radioligands for PET Imaging of Cerebral 5-HT7 Receptors. J. Nucl. Med. 55, 640-646, doi:10.2967/jnumed.113.128983 (2014).
Deau, E. et al. Rational Design, Pharmacomodulation, Synthesis of Dual 5-Hydroxytryptamine 7 (5-HT7)/5-Hydroxytryptamine 2A (5-HT2A) Receptors Antagonists and Evaluation by [18F]-PET Imaging in a Primate Brain. J. Med. Chem. 58, 8066-8096, doi:10.1021/acs.jmedchem.5b00874 (2015).
Andries, J., Lemoine, L., Le Bars, D., Zimmer, L. & Billard, T. Synthesis and biological evaluation of potential 5-HT 7 receptor PET radiotracers. Eur. J. Med. Chem. 46, 3455-3461, doi:10.1016/j.ejmech.2011.05.010 (2011).
Watson, J. et al. 5-HT1A receptor agonist-antagonist binding affnity difference as a measure of intrinsic activity in recombinant and native tissue systems. Br. J. Pharmacol 130, 1108-1114, doi:10.1038/sj.bjp.0703394 (2000).
James, P. N. & Snyder, H. R. Indole-3-aldehyde. Org. Synth. 39, 30, doi:10.15227/orgsyn.039.0030 (1959).
Agarwal, A., Jalluri, R. K., De Witt Blanton, C. Jr. & Will Taylor, T. A new synthesis of a potent 5-HT1 receptor ligand, 5-carboxyamidotryptamine (5-CT). Synth. Commun 23, 1101-1110, doi:10.1080/00397919308018587 (1993).
Zajdel, P. et al. Quinoline-and isoquinoline-sulfonamide derivatives of LCAP as potent CNS multi-receptor-5-HT1A/5-HT2A/5-HT7 and D2/D3/D4-agents: The synthesis and pharmacological evaluation. Bioorg. Med. Chem. 20, 1545-1556, doi:10.1016/j. bmc.2011.12.039 (2012).
Bojarski, A. J. et al. Structure-activity relationship studies of CNS agents.9. 5-HT1A and 5-HT2 receptor affinity of some 2-substitued and 3-substitued 1,2,3,4-tetrahydro-beta-carbolines. Pharmazie. 48, 289-294 (1993).
Paluchowska, M. H. et al. The influence of modifications in imide fragment structure on 5-HT1A and 5-HT7 receptor affinity and in vivo pharmacological properties of some new 1-(m-trifluoromethylphenyl)piperazines. Bioorg. Med. Chem. 15, 7116-7125, doi:10.1016/j.bmc.2007.07.029 (2007).
Cheng, Y. & Prusoff, W. H. Relationship between the inhibition constant (KI) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem. Pharmacol. 22, 3099-3108, doi:10.1016/0006-2952(73)90196-2 (1973).
Bernstein, F. C. et al. The Protein Data Bank: A Computer-Based Archival File for Macromolecular Structures. J. Mol. Biol. 112, 535-542, doi:10.1016/S0022-2836(77)80200-3 (1977).
Discovery Studio v.3.5, Accelrys Software, Inc. San Diego, CA.
Sali, A. & Blundell, T. L. Comparative Protein Modelling by Satisfaction of Spatial Restraints. J. Mol. Biol. 234, 779-815, doi:10.1006/jmbi.1993.1626 (1993).
Calculator Plugins for Structure Property Prediction and Calculation, Marvin 6.2.2, ChemAxon http://www.chemaxon.com (2014).
Small-Molecule Drug Discovery Suite 2015-4: Schrödinger Suite 2015-4 QM-Polarized Ligand Docking protocol, Glide version 6.9, Schrödinger, LLC, New York, NY, 2015, Jaguar version 9.0, Schrödinger, LLC, New York, NY, 2015, QSite version 6.9, Schrödinger, LLC, New York, NY, (2015).