[en] Polycyclic aromatic hydrocarbons (PAHs) are health-concerning organic compounds that
accumulate in the environment. Bioremediation and phytoremediation are studied to develop
eco-friendly remediation techniques. In this study, the e ects of two plants (Medicago sativa L. and
Trifolium pratense L.) on the PAHs’ bioaccessibility in an aged-contaminated soil throughout a long-term rhizoremediation trial was investigated. A bioaccessibility measurement protocol, using Tenax® beads, was adapted to the studied soil. The aged-contaminated soil was cultured with each plant type and compared to unplanted soil. The bioaccessible and residual PAH contents were quantified after 3, 6 and 12 months. The PAHs’ desorption kinetics were established for 15 PAHs and described by asite distribution model. A common Tenax® extraction time (24 h) was established as a comparison basis for PAHs bioaccessibility. The rhizoremediation results show that M. sativa developed better than T. pratense on the contaminated soil. When plants were absent (control) or small (T. pratense), the global PAHs’ residual contents dissipated from the rhizosphere to 8% and 10% of the total initial content, respectively. However, in the presence of M. sativa, dissipation after 12 months was only 50% of the total initial content. Finally, the PAHs’ bioaccessible content increased more significantly in the absence of plants. This one-year trial brought no evidence that the presence of M. sativa or T. pratenseon this tested aged-contaminated soil was beneficial in the PAH remediation process, compared to unplanted soil.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Ghosal, D.; Ghosh, S.; Dutta, T.K.; Ahn, Y. Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): A review. Front. Microbiol. 2016, 7, 107. [CrossRef] [PubMed]
Dhar, K.; Subashchandrabose, S.R.; Venkateswarlu, K.; Krishnan, K.; Megharaj, M. Anaerobic microbial degradation of polycyclic aromatic hydrocarbons: A comprehensive review. Rev. Environ. Contam. Toxicol. 2020, 251, 25–108. [CrossRef]
Keith, L.H. The source of U.S. EPA’s sixteen PAH priority pollutants. Polycycl. Aromat. Compd. 2014, 35, 147–160. [CrossRef]
Nzila, A. Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons under anaerobic conditions: Overview of studies, proposed pathways and future perspectives. Environ. Pollut. 2018, 239, 788–802. [CrossRef]
Johnsen, A.; Wick, L.Y.; Harms, H. Principles of microbial PAH-degradation in soil. Environ. Pollut. 2005, 133, 71–84. [CrossRef] [PubMed]
Semple, K.T.; Doick, K.J.; Jones, K.C.; Burauel, P.; Craven, A.; Harms, H. Peer reviewed: Defining bioavailability and bioaccessibility of contaminated soil and sediment is complicated. Environ. Sci. Technol. 2004, 38, 228A–231A. [CrossRef]
Semple, K.T.; Morriss, A.W.J.; Paton, G. Bioavailability of hydrophobic organic contaminants in soils: Fundamental concepts and techniques for analysis. Eur. J. Soil Sci. 2003, 54, 809–818. [CrossRef]
Cui, X.; Mayer, P.; Gan, J.J. Methods to assess bioavailability of hydrophobic organic contaminants: Principles, operations, and limitations. Environ. Pollut. 2012, 172, 223–234. [CrossRef]
Reichenauer, T.G.; Germida, J.J. Phytoremediation of organic contaminants in soil and groundwater. ChemSusChem 2008, 1, 708–717. [CrossRef]
Ouvrard, S.; Leglize, P.; Morel, J.L. PAH phytoremediation: Rhizodegradation or rhizoattenuation? Int. J. Phytoremediation 2013, 16, 46–61. [CrossRef]
Alagić, S.; Maluckov, B.S.; Radojičić, V.B. How can plants manage polycyclic aromatic hydrocarbons? May these effects represent a useful tool for an effective soil remediation? A review. Clean Technol. Environ. Policy 2014, 17, 597–614. [CrossRef]
Martin, B.; George, S.J.; Price, C.A.; Ryan, M.H.; Tibbett, M. The role of root exuded low molecular weight organic anions in facilitating petroleum hydrocarbon degradation: Current knowledge and future directions. Sci. Total Environ. 2014, 472, 642–653. [CrossRef] [PubMed]
Taiz, L.; Zeiger, E. Plant Physiology; Sinauer: Sunderland, MA, USA, 2006.
Oleszek, W.; Bialy, Z. Chromatographic determination of plant saponins—An update (2002–2005). J. Chromatogr. A 2006, 1112, 78–91. [CrossRef] [PubMed]
Davin, M.; Starren, A.; Marit, E.; Lefébure, K.; Fauconnier, M.-L.; Colinet, G. Investigating the effect of medicago sativa L. and trifolium pratense L. root exudates on PAHs bioremediation in an aged-contaminated soil. Water Air Soil Pollut. 2019, 230, 296. [CrossRef]
Canarini, A.; Kaiser, C.; Merchant, A.; Richter, A.; Wanek, W. Root exudation of primary metabolites: Mechanisms and their roles in plant responses to environmental stimuli. Front. Plant Sci. 2019, 10, 157. [CrossRef] [PubMed]
Hall, J.; Soole, K.; Bentham, R. Hydrocarbon phytoremediation in the family fabacea—A review. Int. J. Phytoremediation 2011, 13, 317–332. [CrossRef]
Sparg, S.; Light, M.E.; van Staden, J. Biological activities and distribution of plant saponins. J. Ethnopharmacol. 2004, 94, 219–243. [CrossRef]
INERIS. Hydrocarbures Aromatiques Polycyliques-Guide Méthodologique-acquisition Des Données D’entrée Des Modèles Analytiques Ou Numériques De Transferts Dans Les Sols Et Les Eaux Souterraines. 2005. Available online: https://www.ineris.fr (accessed on 10 March 2019).
Cornelissen, G.; van Noort, P.C.M.; Govers, H.A.J. Desorption kinetics of chlorobenzenes, polycyclic aromatic hydrocarbons, and polychlorinated biphenyls: Sediment extraction with Tenax(R) and effects of contact time and solute hydrophobicity. Environ. Toxicol. Chem. 1997, 16, 1351–1357. [CrossRef]
Barnier, C.; Ouvrard, S.; Robin, C.; Morel, J.L. Desorption kinetics of PAHs from aged industrial soils for availability assessment. Sci. Total Environ. 2014, 470, 639–645. [CrossRef]
Prague, M.; Diakite, A.; Commenges, D. Package’ marqLevAlg ’-Algorithme de Levenberg-Marquardt en R: Une Alternative à’ Optimx’ Pour des Problèmes de Minimisation. HAL. 2012. Available online: https://hal.archives-ouvertes.fr (accessed on 11 March 2019).
ISO. Soil Quality-Determination of Dry Matter and Water Content on a Mass Basis-Gravimetric Method; The International Organization for Standardization: Geneva, Switzerland, 1993.
ISO. Soil Quality-Determination of Polynuclear Aromatic Hydrocarbons-Method Using High-Performance Liquid Chromatography; The International Organization for Standardization: Geneva, Switzerland, 1998.
Müntz, K.; Belozersky, M.; Dunaevsky, Y.; Schlereth, A.; Tiedemann, J. Stored proteinases and the initiation of storage protein mobilization in seeds during germination and seedling growth. J. Exp. Bot. 2001, 52, 1741–1752. [CrossRef] [PubMed]
ISO/TS. Soil Quality-Environmental Availability of Non-Polar Organic Compounds-Determination of the Potential Bioavailable Fraction and the Non-Bioavailable Fraction Using a Strong Adsorbent or Complexing Agent; The International Organization for Standardization: Geneva, Switzerland, 2018.
Smith, M.J.; Flowers, T.; Duncan, H.; Alder, J. Effects of polycyclic aromatic hydrocarbons on germination and subsequent growth of grasses and legumes in freshly contaminated soil and soil with aged PAHs residues. Environ. Pollut. 2006, 141, 519–525. [CrossRef] [PubMed]
Sverdrup, L.E.; Krogh, P.H.; Nielsen, T.; Kjær, C.; Stenersen, J. Toxicity of eight polycyclic aromatic compounds to red clover (trifolium pratense), ryegrass (lolium perenne), and mustard (sinapsis alba). Chemosphere 2003, 53, 993–1003. [CrossRef]
Henner, P.; Schiavon, M.; Druelle, V.; Lichtfouse, E. Phytotoxicity of ancient gaswork soils. Effect of polycyclic aromatic hydrocarbons (PAHs) on plant germination. Org. Geochem. 1999, 30, 963–969. [CrossRef]
Afegbua, S.L.; Batty, L. Effect of single and mixed polycyclic aromatic hydrocarbon contamination on plant biomass yield and PAH dissipation during phytoremediation. Environ. Sci. Pollut. Res. 2018, 25, 18596–18603. [CrossRef] [PubMed]
Genot, V.; Colinet, G.; Brahy, V.; Bock, L. L’état de fertilité des terres agricoles et forestières en région wallonne (adapté du chapitre 4-sol 1 de «L’État de l’Environnement wallon 2006–2007»). Biotechnol. Agron. Soc. Environ. 2009, 13, 121–138.
Olson, P.E.; Castro, A.; Joern, M.; DuTeau, N.M.; Pilon-Smits, E.A.; Reardon, K.F. Comparison of plant families in a greenhouse phytoremediation study on an aged polycyclic aromatic hydrocarbon-contaminated soil. J. Environ. Qual. 2007, 36, 1461–1469. [CrossRef]
Fan, S.; Li, P.-J.; Gong, Z.; Ren, W.; He, N. Promotion of pyrene degradation in rhizosphere of alfalfa (Medicago sativa L.). Chemosphere 2008, 71, 1593–1598. [CrossRef]
Hamdi, H.; Benzarti, S.; Aoyama, I.; Jedidi, N. Rehabilitation of degraded soils containing aged PAHs based on phytoremediation with alfalfa (Medicago sativa L.). Int. Biodeterior. Biodegrad. 2012, 67, 40–47. [CrossRef]
Teng, Y.; Shen, Y.; Luo, Y.; Sun, X.; Sun, M.; Fu, D.; Li, Z.; Christie, P. Influence of rhizobium meliloti on phytoremediation of polycyclic aromatic hydrocarbons by alfalfa in an aged contaminated soil. J. Hazard. Mater. 2011, 186, 1271–1276. [CrossRef]
Schwab, P.; Al-Assi, A.A.; Banks, M.K. Adsorption of naphthalene onto plant roots. J. Environ. Qual. 1998, 27, 220–224. [CrossRef]
Kang, F.; Chen, D.; Gao, Y.; Zhang, Y. Distribution of polycyclic aromatic hydrocarbons in subcellular root tissues of ryegrass (Lolium multiflorum Lam.). BMC Plant Boil. 2010, 10, 210. [CrossRef]
Leigh, M.B.; Fletcher, J.S.; Fu, X.; Schmitz, F.J. Root turnover: An important source of microbial substrates in rhizosphere remediation of recalcitrant contaminants. Environ. Sci. Technol. 2002, 36, 1579–1583. [CrossRef]
Baquero, R.P.; Martín, M.L.; Ortega-Calvo, J.-J. Implementing standardized desorption extraction into bioavailability-oriented bioremediation of PAH-polluted soils. Sci. Total Environ. 2019, 696, 134011. [CrossRef]
Posada-Baquero, R.; Jiménez-Volkerink, S.N.; García, J.L.; Vila, J.; Cantos, M.; Grifoll, M.; Ortega-Calvo, J.J. Rhizosphere-enhanced biosurfactant action on slowly desorbing PAHs in contaminated soil. Sci. Total Environ. 2020, 720, 137608. [CrossRef] [PubMed]
Medina, R.; Fernández-López, M.; García-Rodríguez, F.M.; Villadas, P.J.; Rosso, J.A.; Fernández-López, M.; Del Panno, M.T. Exploring the effect of composting technologies on the recovery of hydrocarbon contaminated soil post chemical oxidative treatment. Appl. Soil Ecol. 2020, 150, 103459. [CrossRef]
Zhou, W.; Yang, J.; Lou, L.; Zhu, L. Solubilization properties of polycyclic aromatic hydrocarbons by saponin, a plant-derived biosurfactant. Environ. Pollut. 2011, 159, 1198–1204. [CrossRef]
Laha, S.; Tansel, B.; Ussawarujikulchai, A. Surfactant–soil interactions during surfactant-amended remediation of contaminated soils by hydrophobic organic compounds: A review. J. Environ. Manag. 2009, 90, 95–100. [CrossRef] [PubMed]
Davin, M.; Starren, A.; Deleu, M.; Lognay, G.; Colinet, G.; Fauconnier, M.-L. Could saponins be used to enhance bioremediation of polycyclic aromatic hydrocarbons in aged-contaminated soils? Chemosphere 2018, 194, 414–421. [CrossRef] [PubMed]
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.