[en] The annual photoperiod cycle provides the critical environmental cue synchronizing rhythms of life in seasonal habitats. In 1936, Bünning proposed a circadian-basis for photoperiodic synchronization. Here, light-dark cycles entrain a circadian rhythm of photosensitivity, and the expression of summer or winter biology depends on whether light coincides with the phase of high photosensitivity. Formal studies support the universality of this so-called coincidence timer, but we lack understanding of the mechanisms involved. Here we show in mammals that coincidence timing takes place in the pars tuberalis of the pituitary, through a melatonin-dependent flip-flop switch between circadian transcriptional activation and repression. Long photoperiods produce short night-time melatonin signals, leading to induction of the circadian transcription factor BMAL2, in turn triggering summer biology through the eyes absent / thyrotrophin (EYA3 / TSH) pathway. Conversely, short photoperiods produce long melatonin signals, inducing circadian repressors including DEC1, in turn suppressing BMAL2 and the EYA3/TSH pathway, triggering winter biology. These actions are associated with progressive genome-wide changes in chromatin state, elaborating the effect of the circadian coincidence timer. Hence, circadian clock interactions with pituitary epigenetic pathways form the basis of the mammalian coincidence timer mechanism. Our results constitute a blueprint for circadian-based seasonal timekeeping in vertebrates.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Wood, S.H. ✱; University of Manchester > Faculty of Life Sciences > Centre for Biological Timing
Hindle, M.M. ✱; University of Edinburgh > The Roslin Institute
Mizoro, Yasutaka ; University of Manchester > Faculty of Life Sciences > Centre for Biological Timing
Cheng, Y; The University of Queensland > UQ Genomics Initiative
Saer, B.R.C.; University of Manchester > Faculty of Life Sciences > Centre for Biological Timing
Miedzinska, K; University of Edinburgh > The Roslin Institute
Christian, H.C.; University of Oxford > Department of Physiology, Anatomy and Genetics
Begley, N.; University of Manchester > Faculty of Life Sciences > Centre for Biological Timing
McNeilly, J.; Queen's Medical Research Institute > MRC Centre for Reproductive Health
McNeilly, A.S.; Queen's Medical Research Institute > MRC Centre for Reproductive Health
Meddle, S.L.; University of Edinburgh > The Roslin Institute
Burt, D.W.; The University of Queensland > UQ Genomics Initiative
Loudon, A.S.I.; University of Manchester > Faculty of Life Sciences > Centre for Biological Timing
Bünning, E. Die endogene Tagesperiodik als Grundlage der photoperiodischen Reaktion. Ber. Dtsch Bot. Ges. 54, 590–608 (1936).
Pittendrigh, C. S. & Minis, D. H. The entrainment of circadian oscillations by light and their role as photoperiodic clocks. Am. Nat. 98, 261–299 (1964).
Nanda, K. K. & Hamner, K. Studies on the nature of the endogenous rhythm affecting photoperiodic response of Biloxi soybean. Bot. Gaz. 120, 14–28 (1958).
Follett, B. K., Mattocks, P. W. & Farner, D. S. Circadian function in the photoperiodic induction of gonadotropin secretion in the white-crowned sparrow, Zonotrichia leucophrys gambelii. Proc. Natl Acad. Sci. USA 71, 1666–1669 (1974).
Goldman, B. D. Mammalian photoperiodic system: formal properties and neuroendocrine mechanisms of photoperiodic time measurement. J. Biol. Rhythms 16, 283–301 (2001).
Pittendrigh, C. S., Elliott, J. & Takamura, T. The Circadian Component in Photoperiodic Induction. in 26–47, https://doi.org/10.1002/9780470720851.ch4 (Wiley-Blackwell, 2008).
Ikegami, K. & Yoshimura, T. Circadian clocks and the measurement of daylength in seasonal reproduction. Mol. Cell. Endocrinol. 349, 76–81 (2012).
Bartness, T. J., Powers, J. B., Hastings, M. H., Bittman, E. L. & Goldman, B. D. The timed infusion paradigm for melatonin delivery: what has it taught us about the melatonin signal, its reception, and the photoperiodic control of seasonal responses? J. Pineal Res. 15, 161–190 (1993).
Wood, S. & Loudon, A. Clocks for all seasons: unwinding the roles and mechanisms of circadian and interval timers in the hypothalamus and pituitary. J. Endocrinol. 222, R39–R59 (2014).
Woodfill, C. J. I., Wayne, N. L., Moenter, S. M. & Karsch, F. J. Photoperiodic synchronization of a circannual reproductive rhythm in sheep: identification of season-specific time cues’ reproductive sciences program and department of physiology, University of Michigan. Biol. Reprod. 50, 965–976 (1994).
Lincoln, G. A. & Ebling, F. J. P. Effect of constant-release implants of melatonin on seasonal cycles in reproduction, prolactin secretion and moulting in rams. Reproduction 73, 241–253 (1985).
Bittman, E. L., Dempsey, R. J. & Karsch, F. J. Pineal melatonin secretion drives the reproductive response to daylength in the ewe. Endocrinology 113, 2276–2283 (1983).
Dardente, H., Wood, S., Ebling, F. & Sáenz de Miera, C. An integrative view of mammalian seasonal neuroendocrinology. J. Neuroendocrinol. 31, e12729 (2019).
Lincoln, G. A. Melatonin entrainment of circannual rhythms. Chronobiol. Int. 23, 301–306 (2006).
Wood, S. & Loudon, A. The pars tuberalis: the site of the circannual clock in mammals? Gen. Comp. Endocrinol. 258, 222–235 (2017).
West, A. C. & Wood, S. H. Seasonal physiology: making the future a thing of the past. Curr. Opin. Physiol. 5, 1–8 (2018).
Johnston, J. D. et al. Multiple effects of melatonin on rhythmic clock gene expression in the mammalian pars tuberalis. Endocrinology 147, 959–965 (2006).
West, A. et al. Npas4 is activated by melatonin, and drives the clock gene Cry1 in the ovine pars tuberalis. Mol. Endocrinol. 27, 979–989 (2013).
Hanon, E. A. et al. Ancestral TSH mechanism signals summer in a photoperiodic mammal. Curr. Biol. 18, 1147–1152 (2008).
Nakao, N. et al. Thyrotrophin in the pars tuberalis triggers photoperiodic response. Nature 452, 317–322 (2008).
Nakane, Y. & Yoshimura, T. Universality and diversity in the signal transduction pathway that regulates seasonal reproduction in vertebrates. Front. Neurosci. 8, 115 (2014).
Dardente, H. et al. A molecular switch for photoperiod responsiveness in mammals. Curr. Biol. 20, 2193–2198 (2010).
Masumoto, K. et al. Acute induction of Eya3 by late-night light stimulation triggers TSHβ expression in photoperiodism. Curr. Biol. 20, 2199–2206 (2010).
Dupré, S. M. et al. Identification of Eya3 and TAC1 as long-day signals in the sheep pituitary. Curr. Biol. 20, 829–835 (2010).
Angel, A., Song, J., Dean, C. & Howard, M. A polycomb-based switch underlying quantitative epigenetic memory. Nature 476, 105–108 (2011).
Song, J., Irwin, J. & Dean, C. Remembering the prolonged cold of winter. Curr. Biol. 23, R807–R811 (2013).
Satake, A. & Iwasa, Y. A stochastic model of chromatin modification: cell population coding of winter memory in plants. J. Theor. Biol. 302, 6–17 (2012).
Dardente, H., Hazlerigg, D. G. & Ebling, F. J. P. Thyroid hormone and seasonal rhythmicity. Front. Endocrinol. (Lausanne) 5, 19 (2014).
Wood, S. H. et al. Binary switching of calender cells in the pituitary defines the phase of the circannual cycle in mammals. Curr. Biol. 25, 2651–2662 (2015).
Karsch, F. J., Robinson, J. E., Woodfill, C. J. & Brown, M. B. Circannual cycles of luteinizing hormone and prolactin secretion in ewes during prolonged exposure to a fixed photoperiod: evidence for an endogenous reproductive rhythm. Biol. Reprod. 41, 1034–1046 (1989).
Lincoln, G. A., Clarke, I. J., Hut, R. A. & Hazlerigg, D. G. Characterizing a mammalian circannual pacemaker. Science 314, 1941–1944 (2006).
Takahashi, H., Kato, S., Murata, M. & Carninci, P. CAGE (Cap analysis of gene expression): a protocol for the detection of promoter and transcriptional networks. Methods Mol. Biol. 786, 181–200 (2012).
Hussey, S. G., Loots, M. T., van der Merwe, K., Mizrachi, E. & Myburg, A. A. Integrated analysis and transcript abundance modelling of H3K4me3 and H3K27me3 in developing secondary xylem. Sci. Rep. 7, 3370 (2017).
Ershov, N. I. et al. Consequences of early life stress on genomic landscape of H3K4me3 in prefrontal cortex of adult mice. BMC Genomics 19, 93 (2018).
Rose, N. R. & Klose, R. J. Understanding the relationship between DNA methylation and histone lysine methylation. Biochim. Biophys. Acta 1839, 1362–1372 (2014).
Lincoln, G., Messager, S., Andersson, H. & Hazlerigg, D. Temporal expression of seven clock genes in the suprachiasmatic nucleus and the pars tuberalis of the sheep: evidence for an internal coincidence timer. Proc. Natl Acad. Sci. USA 99, 13890–13895 (2002).
Hosoda, H., Motohashi, J., Kato, H., Masushige, S. & Kida, S. A BMAL1 mutant with arginine 91 substituted with alanine acts as a dominant negative inhibitor. Gene 338, 235–241 (2004).
Spiegelman, B. M. & Heinrich, R. Biological control through regulated transcriptional coactivators. Cell 119, 157–167 (2004).
Guo, Y., Scheuermann, T. H., Partch, C. L., Tomchick, D. R. & Gardner, K. H. Coiled-coil coactivators play a structural role mediating interactions in hypoxia-inducible factor heterodimerization. J. Biol. Chem. 290, 7707–7721 (2015).
Huang, N. et al. Crystal structure of the heterodimeric CLOCK:BMAL1 transcriptional activator complex. Science 337, 189–194 (2012).
Hughes, M. E., Hogenesch, J. B. & Kornacker, K. JTK-CYCLE: an efficient nonparametric algorithm for detecting rhythmic components in genome-scale data sets. J. Biol. Rhythms 25, 372–380 (2010).
Xu, H. et al. Cryptochrome 1 regulates the circadian clock through dynamic interactions with the BMAL1 C terminus. Nat. Struct. Mol. Biol. 22, 476–484 (2015).
Maywood, E. S. et al. Translational switching of Cry1 protein expression confers reversible control of circadian behavior in arrhythmic Cry-deficient mice. Proc. Natl Acad. Sci. USA 115, E12388–E12397 (2018).
Partch, C. L., Green, C. B. & Takahashi, J. S. Molecular architecture of the mammalian circadian clock. Trends Cell Biol. 24, 90–99 (2014).
Dardente, H. et al. Melatonin induces Cry1 expression in the pars tuberalis of the rat. Mol. Brain Res. 114, 101–106 (2003).
Dupré, S. M. et al. Identification of melatonin-regulated genes in the ovine pituitary pars tuberalis, a target site for seasonal hormone control. Endocrinology 149, 5527–5539 (2008).
West, A. et al. Npas4 is activated by melatonin, and drives the clock gene Cry1 in the ovine pars tuberalis. Mol. Endocrinol. https://doi.org/10.1210/me.2012-1366 (2013).
Hirano, A. et al. FBXL21 regulates oscillation of the circadian clock through ubiquitination and stabilization of cryptochromes. Cell 152, 1106–1118 (2013).
Dardente, H., Mendoza, J., Fustin, J.-M., Challet, E. & Hazlerigg, D. G. Implication of the F-Box protein FBXL21 in circadian pacemaker function in mammals. PLoS ONE 3, e3530 (2008).
Szklarczyk, D. et al. The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Res. 45, D362–D368 (2017).
Maywood, E. S. et al. The effect of signal frequency on the gonadal response of male Syrian hamsters to programmed melatonin infusions. J. Neuroendocrinol. 4, 37–44 (1992).
Ebling, F. J., Lincoln, G. A., Wollnik, F. & Anderson, N. Effects of constant darkness and constant light on circadian organization and reproductive responses in the ram. J. Biol. Rhythms 3, 365–384 (1988).
Staples, L. D., McPhee, S., Kennaway, D. J. & Williams, A. H. The influence of exogenous melatonin on the seasonal patterns of ovulation and oestrus in sheep. Anim. Reprod. Sci. 30, 185–223 (1992).
Honma, S. et al. Dec1 and Dec2 are regulators of the mammalian molecular clock. Nature 419, 841–844 (2002).
Dardente, H., Fustin, J.-M. & Hazlerigg, D. G. Transcriptional feedback loops in the ovine circadian clock. Comp. Biochem. Physiol. 153, 391–398 (2009).
Hazlerigg, D., Lomet, D., Lincoln, G. & Dardente, H. Neuroendocrine correlates of the critical day length response in the Soay sheep. J. Neuroendocrinol. 30, e12631 (2018).
Gustafson, C. L. & Partch, C. L. Emerging models for the molecular basis of mammalian circadian timing. Biochemistry 54, 134–149 (2015).
Bunger, M. K. et al. Mop3 is an essential component of the master circadian pacemaker in mammals. Cell 103, 1009–1017 (2000).
Wood, S. H. How can a binary switch within the pars tuberalis control seasonal timing of reproduction? J. Endocrinol. 239, R13–R25 (2018).
Klosen, P. et al. The mt1 melatonin receptor and RORbeta receptor are co-localized in specific TSH-immunoreactive cells in the pars tuberalis of the rat pituitary. J. Histochem. Cytochem. 50, 1647–1657 (2002).
Dardente, H., Klosen, P., Pévet, P. & Masson-Pévet, M. MT1 melatonin receptor mRNA expressing cells in the pars tuberalis of the European hamster: effect of photoperiod. J. Neuroendocrinol. 15, 778–786 (2003).
Turley, H. et al. The hypoxia-regulated transcription factor DEC1(Stra13, SHARP-2) and its expression in human tissues and tumours. J. Pathol. 203, 808–813 (2004).
Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
Pertea, M., Kim, D., Pertea, G. M., Leek, J. T. & Salzberg, S. L. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat. Protoc. 11, 1650–1667 (2016).
Liao, Y., Smyth, G. K. & Shi, W. FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).
Law, C. W., Chen, Y., Shi, W. & Smyth, G. K. voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 15, R29 (2014).
Nueda, M. J., Tarazona, S. & Conesa, A. Next maSigPro: updating maSigPro bioconductor package for RNA-seq time series. Bioinformatics 30, 2598 (2014).
Wu, G., Anafi, R. C., Hughes, M. E., Kornacker, K. & Hogenesch, J. B. MetaCycle: an integrated R package to evaluate periodicity in large scale data. Bioinformatics 32, 3351–3353 (2016).
Kamburov, A., Stelzl, U., Lehrach, H. & Herwig, R. The ConsensusPathDB interaction database: 2013 update. Nucleic Acids Res. 41, D793–D800 (2013).
Alexa, A., Rahnenführer, J. & Lengauer, T. Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics 22, 1600–1607 (2006).
Li, L., Stoeckert, C. J. & Roos, D. S. OrthoMCL: Identification of ortholog groups for eukaryotic genomes. Genome Res. 13, 2178–2189 (2003).
UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 47, D506–D515 (2019).
El-Gebali, S. et al. The Pfam protein families database in 2019. Nucleic Acids Res. 47, D427–D432 (2019).
Brind’Amour, J. et al. An ultra-low-input native ChIP-seq protocol for genome-wide profiling of rare cell populations. Nat. Commun. 6, 6033 (2015).
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).
Zang, C. et al. A clustering approach for identification of enriched domains from histone modification ChIP-Seq data. Bioinformatics 25, 1952–1958 (2009).
Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).
Ioshikhes, I. P. & Zhang, M. Q. Large-scale human promoter mapping using CpG islands. Nat. Genet. 26, 61–63 (2000).
Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).
Kuo, R. I., Cheng, Y., Smith, J., Archibald, A. L. & Burt, D. W. Illuminating the dark side of the human transcriptome with TAMA Iso-Seq analysis. Preprint at https://www.biorxiv.org/content/10.1101/780015v1 (2019).
Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).