[en] Lowland tropical bryophytes have been perceived as excellent dispersers. In such groups, the inverse isolation hypothesis proposes that spatial genetic structure is erased beyond the limits of short-distance dispersal. Here, we determine the relative influence of environmental variation and geographic barriers on the spatial genetic structure of a widely dispersed and phylogenetically independent sample of Amazonian bryophytes.
• Single nucleotide polymorphism data were produced from a restriction site-associated DNA sequencing protocol for 10 species and analyzed through F-statistics and Mantel tests.
• Neither isolation-by-environment nor the impact of geographic barriers were recovered from the analyses. However, significant isolation-by-distance patterns were observed for 8 out of the 10 investigated species beyond the scale of short-distance dispersal (>1 km), offering evidence contrary to the inverse isolation hypothesis.
• Despite a cadre of life-history traits and distributional patterns suggesting that tropical bryophytes are highly vagile, our analyses reveal spatial genetic structures comparable to those documented for angiosperms, whose diaspores are orders of magnitude larger. Dispersal limitation for common, widespread tropical bryophytes flies in the face of traditional assumptions regarding bryophyte dispersal potential in tropical environments, and suggests that the plight of this component of cryptic biodiversity is more dire than previously considered in light of accelerated forest fragmentation in the Amazon.
Pereira, Marta; National Institute for Amazonian Research - Manaus, Brazil > Department of Biodiversity
Overson, Rick; Global Institute of Sustainability - Tempe, USA
Laenen, Benjamin; Science for Life laboratory - Stockholm, Sweden > Department of Ecology > Environment and Plant Sciences
Mardulyn, Patrick; Université Libre de Bruxelles (ULB) - Bruxelles, Belgium > Evolutionary Biology and Ecology
Gradstein, Stephan Robbert; Muséum National d'Histoire Naturelle (Paris, France) > Institut de Systématique, Evolution, Biodiversité
De Haan, Myriam; Meise Botanic Garden - Meise, Belgium > Research Department
Ballings, Petra; Meise Botanic Garden - Meise, Belgium > Research Department
Van der Beeten, Iris; Meise Botanic Garden - Meise, Belgium > Research Department
Zartman, Charles Eugene; National Institute for Amazonian Research - Manaus, Belgium > Department of Biodiversity
Vanderpoorten, Alain ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Biologie de l'évolution et de la conservation - aCREA-Ulg
✱ These authors have contributed equally to this work.
Language :
English
Title :
What do tropical cryptogams reveal? Strong genetic structure in Amazonian bryophytes
Publication date :
02 June 2020
Journal title :
New Phytologist
ISSN :
0028-646X
eISSN :
1469-8137
Volume :
228
Issue :
2
Pages :
640-650
Peer reviewed :
Peer reviewed
Tags :
CÉCI : Consortium des Équipements de Calcul Intensif
Adeney JM, Christensen N, Vincenti A, Cohn Haft M. 2016. White-sand ecosystems in Amazonia. Biotropica 48: 7–23.
Barbé M, Fenton NJ, Bergeron Y. 2016. So close and yet so far away: long-distance dispersal events govern bryophyte metacommunity reassembly. Journal of Ecology 104: 1707–1719.
Baughman JT, Payton AC, Paasch AE, Fisher KM, McDaniel SF. 2017. Multiple factors influence population sex ratios in the Mojave Desert moss Syntrichia caninervis. American Journal of Botany 104: 733–742.
Bell N, Griffin PC, Hoffmann AA, Miller AD. 2018. Spatial patterns of genetic diversity among Australian alpine flora communities revealed by comparative phylogenomics. Journal of Biogeography 45: 177–189.
Benavides JC, Duque AJ, Duivenvoorden JF, Cleef AM. 2016. Species richness and distribution of understorey bryophytes in different forest types in Colombian Amazonia. Journal of Bryology 28: 182–189.
Campos Salazar LV. 2016. Diversity of epiphytic bryophytes of the Amazon. Bogotá, Colombia: Dissertation, Universidad Nacional de Colombia.
Cheng H, Sinha A, Cruz FW, Wang X, Edwards RL, d'Horta FM, Ribas CC, Vuille M, Stott LD, Auler AS. 2013. Climate change patterns in Amazonia and biodiversity. Nature Communications 4: 1411.
Chmielewski MW, Eppley SM. 2019. Forest passerines as a novel dispersal vector of viable bryophyte propagules. Proceedings of the Royal Society B 286: 20182253.
Clark LV, Lipka AE, Sacks EJ. 2019. polyRAD: Genotype calling with uncertainty from sequencing data in polyploids and diploids. G3: Genes, Genomes, Genetics 9: 663–673.
Cornelissen JHC, Ter Steege H. 1989. Distribution and ecology of epiphytic bryophytes and lichens in dry evergreen forests of Guyana. Journal of Tropical Ecology 5: 131–150.
Costa FM, Terra-Araujo MH, Zartman CE, Cornelius C, Carvahlo FA, Hopkins MJG, Viana PL, Prata EMB, Vicentini A. 2019. Islands in a green ocean: Spatially structured endemism in Amazonian white-sand vegetation. Biotropica 52: 34–45.
Dambros CS, Morais JW, Azevedo RA, Gotelli NJ. 2017. Isolation by distance, not rivers, control the distribution of termite species in the Amazonian rain forest. Ecography 40: 1242–1250.
Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE. 2011. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6: e19379.
Fine PVA, Baraloto C. 2016. Habitat endemism in white-sand forests: insights into the mechanisms of lineage diversification and community assembly of the Neotropical flora. Biotropica 48: 24–33.
Fine PVA, Zapata F, Daly DC, Mesones I, Misiewicz TM, Cooper HF, Barbosa CEA. 2013. The importance of environmental heterogeneity and spatial distance in generating phylogenetic structure in edaphic specialist and generalist tree species of Protium (Burseraceae) across the Amazon Basin. Journal of Biogeography 40: 646–661.
Guevara JE, Damasco G, Baraloto C, Fine PVA, Peñuela MC, Castilho C, Vincentini A, Cárdenas D, Wittmann F, Targhetta N et al. 2016. Low phylogenetic beta diversity and geographic neo-endemism in Amazonian white-sand forests. Biotropica 48: 34–46.
Hardy OJ, Vekemans X. 2002. SPAGeDi: a versatile computer program to analyze spatial genetic structure at the individual or population levels. Molecular Ecology Notes 2: 618–620.
Hodel RGJ, Chen S, Payton AC, McDaniel SF, Soltis P, Soltis DE. 2017. Adding loci improves phylogeographic resolution in red mangroves despite increased missing data: comparing microsatellites and RAD-Seq and investigating loci filtering. Scientific Reports 7: 17598.
Holá E, Košnar J, Kučera J. 2015. Comparison of genetic structure of epixylic liverwort Crossocalyx hellerianus between central European and fennoscandian populations. PLoS ONE 10: e0133134.
Hoorn C, Wesselingh FP. 2010. Amazonia: landscape and species evolution. A look into the past. Oxford, UK: Wiley & Sons.
Hutsemékers V, Hardy O, Mardulyn P, Shaw AJ, Vanderpoorten A. 2010. Macroecological patterns of genetic structure and diversity in the aquatic moss Platyhypnidium riparioides. New Phytologist 185: 852–864.
Hutsemékers V, Hardy OJ, Vanderpoorten A. 2013. Does water facilitate gene flow in spore-producing plants? Insights from the fine-scale genetic structure of the aquatic moss Rhynchostegium riparioides (Brachytheciaceae). Aquatic Botany 108: 1–6.
Klonoski K, Bi K, Rosenblum EB. 2019. Phenotypic and genetic diversity in aposematic Malagasy poison frogs (genus Mantella). Ecology and Evolution 9: 2725–2742.
Korneliussen TS, Albrechtsen A, Nielsen R. 2014. Angsd: analysis of next generation sequencing data. BMC Bioinformatics 15: 356.
Korpelainen H, von Cräutlein M, Kostamo K, Virtanen V. 2013. Spatial genetic structure of aquatic bryophytes in a connected lake system. Plant Biology 15: 514–521.
Korpelainen H, von Cräutlein M, Laaka-Lindberg S, Huttunen S. 2011. Fine-scale spatial genetic structure of a liverwort (Barbilophozia attenuata) within a network of ant trails. Evolutionary Ecology 25: 45–57.
Korpelainen H, Forsman H, Virtanen V, Pietiläinen M, Kostamo K. 2012. Genetic composition of bryophyte populations occupying habitats differing in the level of human disturbance. International Journal of Plant Sciences 173: 1015–1022.
Lewis LR, Biersma EM, Carey SB, Holsinger K, McDaniel SF, Rozzi R, Goffinet B. 2017. Resolving the northern hemisphere source region for the long-distance dispersal event that gave rise to the South American endemic dung moss Tetraplodon fuegianus. American Journal of Botany 104: 1651–1659.
Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25: 1754–1760.
Loiselle BA, Sork VL, Nason J, Graham C. 1995. Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae). American Journal of Botany 82: 1420–1425.
Lönnell N, Hylander K, Jonsson BG, Sundberg S. 2012. The fate of the missing spores – patterns of realized dispersal beyond the closest vicinity of a sporulating moss. PLoS ONE 7: e41987.
Marí MLG, Toledo JJ, Nascimento HEM, Zartman CE. 2016. Regional and fine scale variation of holoepiphyte community structure in Central Amazonian white-sand forests. Biotropica 48: 70–80.
Medina NG, Draper I, Lara F. 2011. Biogeography of mosses and allies: does size matter? In: FontanetoD, ed. Biogeography of micro-organisms. Is everything small everywhere? Cambridge, UK: Cambridge University Press, 209–233.
Meisner J, Albrechsten A. 2018. Inferring population structure and admixture proportions in low depth NGS data. Genetics 210: 719–731.
Mikulaskova E, Hajek M, Veleba A, Johnson MG, Hajek T, Shaw AJ. 2014. Local adaptations in bryophytes revisited: the genetic structure of the calcium-tolerant peatmoss Sphagnum warnstorfii along geographic and pH gradients. Ecology and Evolution 5: 229–242.
Mota de Oliveira S, Temme A, Erkens R, ter Steege H. 2011. Dispersal and connectivity of populations of Cheilolejeunea rigidula (Lejeuneaceae) in Amazonian forests: a pilot study. Boletim do Instituto de Botânica 21: 133–139.
Mota de Oliveira S, ter Steege H. 2015. Bryophyte communities in the Amazon forest are regulated by height on the host tree and site elevation. Journal of Ecology 102: 441–450.
Nazareno AG, Dick CW, Lohmann LG. 2019. A biogeographic barrier test reveals a strong genetic structure for a canopy-emergent Amazon tree species. Scientific Reports 9: 18602.
Ortiz DA, Lima AP, Werneck F. 2018. Environmental transition zone and rivers shape intraspecific population structure and genetic diversity of an Amazonian rain forest tree frog. Evolutionary Ecology 32: 359–378.
Paris JR, Stevens JR, Catchen JM. 2017. Lost in parameter space: a road map for STACKS. Methods in Ecology and Evolution 8: 1360–1373.
Parsons JG, Cairns A, Johnson CN, Robson SKA, Shilton LA, Westcott DA. 2007. Bryophyte dispersal by flying foxes: a novel discovery. Oecologia 152: 112–114.
Patiño J, Carine MA, Fernández-Palacios JM, Otto R, Schaefer H, Vanderpoorten A. 2014. The anagenetic world of spore-producing land plants. New Phytologist 201: 305–311.
Patiño J, Vanderpoorten A. 2018. Bryophyte biogeography. Critical Reviews in Plant Sciences 37: 175–209.
Pereira MR, Câmara PEAS, Amorim BS, McDaniel SF, Payton AC, Carey SB, Sierra AM, Zartman CE. 2019b. Advances in Calymperaeae (Dicranidae, Bryophyta): phylogeny, divergence times and pantropical promiscuity. The Bryologist 122: 183–196.
Pereira MR, Dambros CS, Zartman CE. 2016. Prezygotic resource-allocation dynamics and reproductive trade-offs in Calymperaceae (Bryophyta). American Journal of Botany 103: 1–9.
Pereira MR, Ledent A, Mardulyn P, Zartman CE, Vanderpoorten A. 2019a. Maintenance of genetic and morphological identity in two sibling Syrrhopodon species (Calymperaceae, Bryopsida) despite extensive introgression. Journal of Systematics and Evolution 57: 395–403.
Prunier R, Akman M, Kremer CT, Aitken N, Chuah A, Borevitz J, Holsinger KE. 2017. Isolation by distance and isolation by environment contribute to population differentiation in Protea repens (Proteaceae L.), a widespread South African species. American Journal of Botany 104: 674–684.
Ramos SLF, Dequigiovanni G, Sebbenn AM, Gomes Lopes MT, Kageyama PY, Vasconcelos de Macêdo JL, Kirst M, Veasey EA. 2016. Spatial genetic structure, genetic diversity and pollen dispersal in a harvested population of Astrocaryum aculeatum in the Brazilian Amazon. BMC Genetics 17: 63.
Russo NJ, Robertson M, MacKenzie R, Goffinet B, Jiménez JE. 2020. Evidence of targeted consumption of mosses by birds in sub-Antarctic South America. Austral Ecology 45: 399–403.
Santorelli S, Magnusson WE, Deus CP. 2018. Most species are not limited by an Amazonian river postulated to be a border between endemism areas. Scientific Reports 8: 2294.
Schuster RM. 1983. Phytogeography of the bryophyta. In: Schuster RM, ed. New manual of bryology, vol. 1. Nichinan, Japan: The Hattori Botanical Laboratory, 463–626.
Seidler TG, Plotkin JB. 2006. Seed dispersal and spatial pattern in tropical trees. PLoS Biology 4: e344.
Sexton JP, Hangartner SB, Hoffmann AA. 2014. Genetic isolation by environment or distance: which pattern of gene flow is most common? Evolution 68: 1–15.
Shaw AJ. 1992. The evolutionary capacity of bryophytes and lichens. In: Bates JW, Farmer AM, eds. Bryophytes and lichens in a changing environment. Oxford, UK: Oxford University Press, 362–380.
Sierra AM, Vanderpoorten A, Gradstein SR, Pereira MR, Bastos CJP, Zartman CE. 2018. Bryophytes of Jaù National Park (Amazonas, Brazil): estimating species detectability and richness in a lowland Amazonian megareserve. The Bryologist 121: 571–588.
Smith BT, McCormack JE, Cuervo AM, Hickerson MJ, Aleixo A, Cadena CD, Pérez-Emán J, Burney CW, Xie X, Harvey MG et al. 2014. The drivers of tropical speciation. Nature 515: 406–409.
Snäll T, Fogelqvist J, Ribeiro PJ, Lascoux M. 2004. Spatial genetic structure in two congeneric epiphytes with different dispersal strategies analysed by three different methods. Molecular Ecology 13: 2109–2119.
Sonah H, Bastien M, Iquira E, Tardivel A, Légaré G, Boyle B, Normandeau E, Laroche J, Larose S, Jean M et al. 2013. An improved Genotyping by Sequencing (GBS) approach offering increased versatility and efficiency of SNP discovery and genotyping. PLoS ONE 8: e54603.
Sujii PS, Martins K, de Oliveira Wadt LH, Renno Azevedo VC, Solferini VN. 2015. Genetic structure of Bertholletia excelsa populations from the Amazon at different spatial scales. Conservation Genetics 16: 955–964.
Sundberg S. 2005. Larger capsules enhance short-range spore dispersal in Sphagnum, but what happens further away? Oikos 108: 115–124.
Szövényi P, Sundberg S, Shaw AJ. 2012. Long-distance dispersal and genetic structure of natural populations: an assessment of the inverse isolation hypothesis in peat mosses. Molecular Ecology 21: 5461–5472.
Vanderpoorten A, Patiño J, Désamoré A, Laenen B, Gorski P, Papp B, Hola E, Korpelainen H, Hardy OJ. 2019. To what extent are bryophytes efficient dispersers? Journal of Ecology 107: 2149–2154.
Vekemans X, Hardy OJ. 2004. New insights from fine-scale spatial genetic structure analyses in plant populations. Molecular Ecology 13: 921–935.
Wallace AR. 1852. On the monkeys of the Amazon. Proceedings of the Zoological Society of London 20: 107–110.
Wang IJ, Bradburd GS. 2014. Isolation by environment. Molecular Ecology 23: 5649–5662.
Zartman CE, Nascimento HEM. 2006. Are habitat tracking metacommunities dispersal limited? Inferences from abundance-occupancy patterns of epiphylls in Amazonian forest fragments. Biological Conservation 127: 46–54.
Zartman CE, Nascimento HEM, Cangani KG, Alvarenga LDP, Snäll T. 2012. Fine-scale changes in connectivity affect the metapopulation dynamics of a bryophyte confined to ephemeral patches. Journal of Ecology 100: 980–986.
Zartman CE, Shaw AJ. 2006. Metapopulation extinction thresholds in rain forest remnants. American Naturalist 167: 177–189.