F. Caimari, M. Korbonits, Novel genetic causes of pituitary adenomas. Clin. Cancer Res. 22(20), 5030–42 (2016)
S. Vandeva, A.F. Daly, P. Petrossians, S. Zacharieva, A. Beckers, Genetics in endocrinology: somatic and germline mutations in the pathogenesis of pituitary adenomas. Eur. J. Endocrinol. 181(6), R235–R254 (2019)
E.D. Aflorei, M. Korbonits, Epidemiology and etiopathogenesis of pituitary adenomas. J. Neurooncol. 117(3), 379–94 (2014)
A. Beckers, L.A. Aaltonen, A.F. Daly, A. Karhu, Familial isolated pituitary adenomas (FIPA) and the pituitary adenoma predisposition due to mutations in the aryl hydrocarbon receptor interacting protein (AIP) gene. Endocr. Rev. 34(2), 239–77 (2013)
O. Vierimaa, M. Georgitsi, R. Lehtonen, P. Vahteristo, A. Kokko, A. Raitila et al. Pituitary adenoma predisposition caused by germline mutations in the AIP gene. Science 312(5777), 1228–30 (2006)
L. Rostomyan, A.F. Daly, P. Petrossians, E. Nachev, A.R. Lila, A.L. Lecoq et al. Clinical and genetic characterization of pituitary gigantism: an international collaborative study in 208 patients. Endocr. Relat. Cancer 22(5), 745–57 (2015)
G. Trivellin, M. Korbonits, AIP and its interacting partners. J. Endocrinol. 210(2), 137–55 (2011)
M. Gasperi, E. Martino, L. Manetti, M. Arosio, S. Porretti, G. Faglia et al. Prevalence of thyroid diseases in patients with acromegaly: results of an Italian multi-center study. J. Endocrinol. Investig. 25(3), 240–5 (2002)
B.E. Gullu, O. Celik, N. Gazioglu, P. Kadioglu, Thyroid cancer is the most common cancer associated with acromegaly. Pituitary 13(3), 242–8 (2010)
S. Dagdelen, N. Cinar, T. Erbas, Increased thyroid cancer risk in acromegaly. Pituitary 17(4), 299–306 (2014)
H.K. Kim, J.S. Lee, M.H. Park, J.S. Cho, J.H. Yoon, S.J. Kim et al. Tumorigenesis of papillary thyroid cancer is not BRAF-dependent in patients with acromegaly. PLoS ONE 9(10), e110241-e (2014)
J. Dal, M.Z. Leisner, K. Hermansen, D.K. Farkas, M. Bengtsen, C. Kistorp et al. Cancer incidence in patients with acromegaly: a cohort study and meta-analysis of the literature. J. Clin. Endocrinol. Metab. 103(6), 2182–8 (2018)
N.B. Lai, D. Garg, A.P. Heaney, M. Bergsneider, A.M. Leung, No Benefit of Dedicated Thyroid Nodule Screening in Patients with Acromegaly. Endocr. Pract. 26(1), 16–21 (2020).
N. Onoda, E. Ohmura, T. Tsushima, Y. Ohba, N. Emoto, O. Isozaki et al. Autocrine role of insulin-like growth factor (IGF)-I in a human thyroid cancer cell line. Eur. J. Cancer 28A(11), 1904–9 (1992)
J.A. Fagin, S.A. Wells Jr., Biologic and clinical perspectives on thyroid cancer. N. Engl. J. Med. 375(11), 1054–67 (2016)
Y.E. Nikiforov, M.N. Nikiforova, Molecular genetics and diagnosis of thyroid cancer. Nat. Rev. Endocrinol. 7(10), 569–80 (2011)
L. Roque, R. Rodrigues, A. Pinto, V. Moura-Nunes, J. Soares, Chromosome imbalances in thyroid follicular neoplasms: a comparison between follicular adenomas and carcinomas. Genes Chromosomes Cancer 36(3), 292–302 (2003)
S. Hemmer, V.M. Wasenius, S. Knuutila, K. Franssila, H. Joensuu, DNA copy number changes in thyroid carcinoma. Am. J. Pathol. 154(5), 1539–47 (1999)
S.-H. Jung, M.S. Kim, C.K. Jung, H.-C. Park, S.Y. Kim, J. Liu et al. Mutational burdens and evolutionary ages of thyroid follicular adenoma are comparable to those of follicular carcinoma. Oncotarget 7(43), 69638–48 (2016)
C. Cañibano, N.L. Rodriguez, C. Saez, S. Tovar, M. Garcia-Lavandeira, M.G. Borrello et al. The dependence receptor Ret induces apoptosis in somatotrophs through a Pit-1/p53 pathway, preventing tumor growth. EMBO J. 26(8), 2015–28 (2007)
Z. Ozfirat, M. Korbonits, AIP gene and familial isolated pituitary adenomas. Mol. Cell. Endocrinol. 326(1-2), 71–9 (2010)
M. Vargiolu, D. Fusco, I. Kurelac, D. Dirnberger, R. Baumeister, I. Morra et al. The tyrosine kinase receptor RET interacts in vivo with aryl hydrocarbon receptor-interacting protein to alter survivin availability. J. Clin. Endocrinol. Metab. 94(7), 2571–8 (2009)
S.K. de Oliveira, M. Hoffmeister, S. Gambaryan, W. Muller-Esterl, J.A. Guimaraes, A.P. Smolenski, Phosphodiesterase 2A forms a complex with the co-chaperone XAP2 and regulates nuclear translocation of the aryl hydrocarbon receptor. J. Biol. Chem. 282(18), 13656–63 (2007)
B.H. Kang, D.C. Altieri, Regulation of survivin stability by the aryl hydrocarbon receptor-interacting protein. J. Biol. Chem. 281(34), 24721–7 (2006)
C. Urbani, D. Russo, F. Raggi, M. Lombardi, C. Sardella, I. Scattina et al. A novel germline mutation in the aryl hydrocarbon receptor-interacting protein (Aip) gene in an Italian family with gigantism. J. Endocrinol. Investig. 37(10), 949–55 (2014)
G. Occhi, G. Trivellin, F. Ceccato, P. De Lazzari, G. Giorgi, S. Dematte et al. Prevalence of AIP mutations in a large series of sporadic Italian acromegalic patients and evaluation of CDKN1B status in acromegalic patients with multiple endocrine neoplasia. Eur. J. Endocrinol. 163(3), 369–76 (2010)
B. Nord, C. Larsson, F.K. Wong, G. Wallin, B.T. Teh, J. Zedenius, Sporadic follicular thyroid tumors show loss of a 200-kb region in 11q13 without evidence for mutations in the MEN1 gene. Genes Chromosomes Cancer 26(1), 35–9 (1999)
A. Daly, L. Rostomyan, D. Betea, J.F. Bonneville, C. Villa, N.S. Pellegata et al. AIP-mutated acromegaly resistant to first-generation somatostatin analogs: long-term control with pasireotide LAR in two patients. Endocr. Connect. 8(4), 367–77 (2019)
C. Mian, F. Ceccato, S. Barollo, S. Watutantrige-Fernando, N. Albiger, D. Regazzo et al. AHR over-expression in papillary thyroid carcinoma: clinical and molecular assessments in a series of Italian acromegalic patients with a long-term follow-up. PLoS ONE. 9(7), e101560 (2014)
E. Vermeulen, I. Geesink, M.K. Schmidt, C. Steegers, D. Verhue, F.W. Brom et al. Secondary use of human tissue: consent and better information required. Ned. Tijdschr. Geneeskd. 153, A948 (2009)
A. Barlier, J.F. Vanbellinghen, A.F. Daly, M. Silvy, M.L. Jaffrain-Rea, J. Trouillas et al. Mutations in the aryl hydrocarbon receptor interacting protein gene are not highly prevalent among subjects with sporadic pituitary adenomas. J. Clin. Endocrinol. Metab. 92(5), 1952–5 (2007)
M. Georgitsi, E. Heliovaara, R. Paschke, A.V. Kumar, M. Tischkowitz, O. Vierimaa et al. Large genomic deletions in AIP in pituitary adenoma predisposition. J. Clin. Endocrinol. Metab. 93(10), 4146–51 (2008)
S. Richards, N. Aziz, S. Bale, D. Bick, S. Das, J. Gastier-Foster et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 17(5), 405–24 (2015)
W.R. Geurts-Giele, E.H. Rosenberg, Av. Rens, M.Ev. Leerdam, W.N. Dinjens, F.E. Bleeker, Somatic mosaicism by a de novo MLH1 mutation as a cause of Lynch syndrome. Mol. Genet. Genom. Med. 7(7), e00699 (2019)
J. van Riet, N.M.G. Krol, P.N. Atmodimedjo, E. Brosens, van IWFJ, M. Jansen et al. SNPitty: an intuitive web application for interactive B-allele frequency and copy number visualization of next-generation sequencing data. J. Mol. Diagn. 20(2), 166–76 (2018)
T.J. Giordano, Genomic hallmarks of thyroid neoplasia. Annu. Rev. Pathol. Mech. Dis. 13(1), 141–62 (2018)
M.N. Nikiforova, R.A. Lynch, P.W. Biddinger, E.K. Alexander, G.W. Dorn II, G. Tallini et al. RAS point mutations and PAX8-PPAR gamma rearrangement in thyroid tumors: evidence for distinct molecular pathways in thyroid follicular carcinoma. J. Clin. Endocrinol. Metab. 88(5), 2318–26 (2003)
K. Aydin, C. Aydin, S. Dagdelen, G.G. Tezel, T. Erbas, Genetic alterations in differentiated thyroid cancer patients with acromegaly. Exp. Clin. Endocrinol. Diabetes 124(3), 198–202 (2016)
P.F. Day, M.G. Loto, M. Glerean, M.F.R. Picasso, S. Lovazzano, D.H. Giunta, Incidence and prevalence of clinically relevant pituitary adenomas: retrospective cohort study in a Health Management Organization in Buenos Aires, Argentina. Arch. Endocrinol. Metab. 60, 554–61 (2016)
R. Sciuto, L. Romano, S. Rea, F. Marandino, I. Sperduti, C.L. Maini, Natural history and clinical outcome of differentiated thyroid carcinoma: a retrospective analysis of 1503 patients treated at a single institution. Ann. Oncol. 20(10), 1728–35 (2009)
A.F. Daly, M.A. Tichomirowa, P. Petrossians, E. Heliovaara, M.L. Jaffrain-Rea, A. Barlier et al. Clinical characteristics and therapeutic responses in patients with germ-line AIP mutations and pituitary adenomas: an international collaborative study. J. Clin. Endocrinol. Metab. 95(11), E373–83 (2010)
L.C. Hernandez-Ramirez, P. Gabrovska, J. Denes, K. Stals, G. Trivellin, D. Tilley et al. Landscape of familial isolated and young-onset pituitary adenomas: prospective diagnosis in AIP mutation carriers. J. Clin. Endocrinol. Metab. 100(9), E1242–54 (2015)
F. Williams, S. Hunter, L. Bradley, H.S. Chahal, H.L. Storr, S.A. Akker et al. Clinical experience in the screening and management of a large kindred with familial isolated pituitary adenoma due to an aryl hydrocarbon receptor interacting protein (AIP) mutation. J. Clin. Endocrinol. Metab. 99(4), 1122–31 (2014)
M. Korbonits, H. Storr, A.V. Kumar, Familial pituitary adenomas—who should be tested for AIP mutations? Clin. Endocrinol. (Oxf.) 77(3), 351–6 (2012)
L. Cazabat, J. Bouligand, S. Salenave, M. Bernier, S. Gaillard, F. Parker et al. Germline AIP mutations in apparently sporadic pituitary adenomas: prevalence in a prospective single-center cohort of 443 patients. J. Clin. Endocrinol. Metab. 97(4), E663–E70 (2012)
L. Katznelson, E.R. Laws, S. Melmed, M.E. Molitch, M.H. Murad, A. Utz et al. Acromegaly: an Endocrine Society Clinical Practice Guideline. J. Clin. Endocr. Metab. 99(11), 3933–51 (2014)