Bioactive compounds; Enyne metathesis; Ring-closing metathesis; Ruthenium catalysts; Tandem reactions
Abstract :
[en] This account surveys the current progress on the application of intra- and intermolecular enyne metathesis as main key steps in the synthesis of challenging structural motifs and stereochemistries found in bioactive compounds. Special emphasis is placed on ruthenium catalysts as promoters of enyne metathesis to build the desired 1,3-dienic units. The advantageous association of this approach with name reactions like Grignard, Wittig, Diels–Alder, Suzuki–Miyaura, Heck cross-coupling, etc. is illustrated. Examples unveil the generality of such tandem reactions in providing not only the intricate structures of known, in vivo effective substances but also for designing chemically modified analogs as valid alternatives for further therapeutic agents.
Disciplines :
Chemistry
Author, co-author :
Dragutan, Valerian; Institute of Organic Chemistry of the Romanian Academy, Bucharest, 060023, Romania
Dragutan, Ileana; Institute of Organic Chemistry of the Romanian Academy, Bucharest, 060023, Romania
Demonceau, Albert ; Université de Liège - ULiège > Département de chimie (sciences) > Département de chimie (sciences)
Delaude, Lionel ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie organométallique et catalyse homogène
Language :
English
Title :
Combining enyne metathesis with long-established organic transformations: A powerful strategy for the sustainable synthesis of bioactive molecules
Publication date :
2020
Journal title :
Beilstein Journal of Organic Chemistry
eISSN :
1860-5397
Publisher :
Beilstein-Institut Zur Forderung der Chemischen Wissenschaften
Volume :
16
Pages :
738-755
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
WBI - Wallonie-Bruxelles International Academia Română
Guo, Z.; Hong, S. Y.; Wang, J.; Rehan, S.; Liu, W.; Peng, H.; Das, M.; Li, W.; Bhat, S.; Peiffer, B.; Ullman, B. R.; Tse, C.-M.; Tarmakova, Z.; Schiene-Fischer, C.; Fischer, G.; Coe, I.; Paavilainen, V. O.; Sun, Z.; Liu, J. O. Nat. Chem. 2019, 11, 254–263. doi:10.1038/s41557-018-0187-4
Chattopadhyay, S. K.; Ghosh, S.; Sil, S. Beilstein J. Org. Chem. 2018, 14, 3070–3075. doi:10.3762/bjoc.14.285
Wu, Q.; Rauscher, P. M.; Lang, X.; Wojtecki, R. J.; de Pablo, J. J.; Hore, M. J. A.; Rowan, S. J. Science 2017, 358, 1434–1439. doi:10.1126/science.aap7675
Schultze, C.; Schmidt, B. Beilstein J. Org. Chem. 2018, 14, 2991–2998. doi:10.3762/bjoc.14.278
Yu, M.; Lou, S.; Gonzalez-Bobes, F. Org. Process Res. Dev. 2018, 22, 918–946. doi:10.1021/acs.oprd.8b00093
Erak, M.; Bellmann-Sickert, K.; Els-Heindl, S.; Beck-Sickinger, A. G. Bioorg. Med. Chem. 2018, 26, 2759–2765. doi:10.1016/j.bmc.2018.01.012
Dragutan, I.; Dragutan, V.; Mitan, C.; Vosloo, H. C. M.; Delaude, L.; Demonceau, A. Beilstein J. Org. Chem. 2011, 7, 699–716. doi:10.3762/bjoc.7.81
Gułajski, Ł.; Tracz, A.; Urbaniak, K.; Czarnocki, S. J.; Bieniek, M.; Olszewski, T. K. Beilstein J. Org. Chem. 2019, 15, 160–166. doi:10.3762/bjoc.15.16
Xu, C.; Shen, X.; Hoveyda, A. H. J. Am. Chem. Soc. 2017, 139, 10919–10928. doi:10.1021/jacs.7b06552
Etsè, K. S.; Ngendera, A.; Ntumba, N. T.; Demonceau, A.; Delaude, L.; Dragutan, I.; Dragutan, V. Curr. Med. Chem. 2017, 24, 4538–4578. doi:10.2174/0929867324666170314122820
Pollini, J.; Bragoni, V.; Gooßen, L. J. Beilstein J. Org. Chem. 2018, 14, 2737–2744. doi:10.3762/bjoc.14.252
Dassonneville, B.; Delaude, L.; Demonceau, A.; Dragutan, I.; Dragutan, V.; Etsè, K. S.; Hans, M. Curr. Org. Chem. 2013, 17, 2609–2653. doi:10.2174/1385272811317220006
Meek, S. J.; O’Brien, R. V.; Llaveria, J.; Schrock, R. R.; Hoveyda, A. H. Nature 2011, 471, 461–466. doi:10.1038/nature09957
Benke, Z.; Nonn, M.; Kardos, M.; Fustero, S.; Kiss, L. Beilstein J. Org. Chem. 2018, 14, 2698–2707. doi:10.3762/bjoc.14.247
Yu, M.; Schrock, R. R.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2015, 54, 215–220. doi:10.1002/anie.201409120
Montgomery, T. P.; Ahmed, T. S.; Grubbs, R. H. Angew. Chem., Int. Ed. 2017, 56, 11024–11036. doi:10.1002/anie.201704686
Montgomery, T. P.; Johns, A. M.; Grubbs, R. H. Catalysts 2017, 7, 87. doi:10.3390/catal7030087
Lekky, A.; Ruengsatra, T.; Ruchirawat, S.; Ploypradith, P. J. Org. Chem. 2019, 84, 5277–5291. doi:10.1021/acs.joc.9b00263
Müller, D. S.; Curbet, I.; Raoul, Y.; Le Nôtre, J.; Baslé, O.; Mauduit, M. Org. Lett. 2018, 20, 6822–6826. doi:10.1021/acs.orglett.8b02943
Kotha, S.; Meshram, M.; Chakkapalli, C. Beilstein J. Org. Chem. 2018, 14, 2468–2481. doi:10.3762/bjoc.14.223
Li, J.; Lee, D. Enyne Metathesis. In Handbook of Metathesis: Applications in Organic Synthesis, 2nd ed.; Grubbs, R. H.; O’Leary, D. J., Eds.; Wiley-VCH: Weinheim, Germany, 2015; pp 381–444. doi:10.1002/9783527674107.ch19
Diver, S. T.; Griffiths, J. R. Ene-Yne Metathesis. In Olefin Metathesis: Theory and Practice, 1st ed.; Grela, K., Ed.; John Wiley & Sons: Hoboken, New Jersey, 2014; pp 153–185. doi:10.1002/9781118711613.ch4
Chang, L.; Jiang, H.; Fu, J.; Liu, B.; Li, C.-c.; Yang, Z. J. Org. Chem. 2012, 77, 3609–3614. doi:10.1021/jo300039q
Kim, C. H.; An, H. J.; Shin, W. K.; Yu, W.; Woo, S. K.; Jung, S. K.; Lee, E. Angew. Chem., Int. Ed. 2006, 45, 8019–8021. doi:10.1002/anie.200603363
Ko, H. M.; Lee, C. W.; Kwon, H. K.; Chung, H. S.; Choi, S. Y.; Chung, Y. K.; Lee, E. Angew. Chem., Int. Ed. 2009, 48, 2364–2366. doi:10.1002/anie.200805266
Trost, B. M.; Bai, W.-J.; Stivala, C. E.; Hohn, C.; Poock, C.; Heinrich, M.; Xu, S.; Rey, J. J. Am. Chem. Soc. 2018, 140, 17316–17326. doi:10.1021/jacs.8b11827
Fürstner, A.; Bouchez, L. C.; Morency, L.; Funel, J.-A.; Liepins, V.; Porée, F.-H.; Gilmour, R.; Laurich, D.; Beaufils, F.; Tamiya, M. Chem. – Eur. J. 2009, 15, 3983–4010. doi:10.1002/chem.200802067