González-Galindo, F.; Instituto de Astrofísica de Andalucía-CSIC, Granada, Spain
Chaufray, J.-Y.; LATMOS, CNRS, Paris, France
Forget, F.; Laboratoire de Météorologie Dynamique, CNRS, Paris, France
García-Comas, M.; Instituto de Astrofísica de Andalucía-CSIC, Granada, Spain
Montmessin, F.; LATMOS, CNRS, Paris, France
Jain, S. K.; Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, CO, United States
Stiepen, Arnaud ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Language :
English
Title :
UV Dayglow Variability on Mars: Simulation With a Global Climate Model and Comparison With SPICAM/MEx Data
Angelats i Coll, M., Forget, F., López-Valverde, M. A., & González-Galindo F. (2005). The first Mars thermospheric general circulation model: The Martian atmosphere from the ground to 240 km. Geophysical Research Letters, 32, L04201. https://doi.org/10.1029/2004GL021368
Avakyan, S., Ii'In, R., Lavrov, V., & Ogurtsov, G. (1999). Collision processes and excitation of UV emission from planetary atmospheric gases: A handbook of cross sections. Australia, Canada: Gordon and Breach Science Publishers
Barth, C. A., Hord, C. W., Pearce, J. B., Kelly, K. K., Anderson, G. P., & Stewart, A. I. (1971). Mariner 6 and 7 ultraviolet spectrometer experiment: Upper atmosphere data. Journal of Geophysical Research, 76(10), 2213–2227. https://doi.org/10.1029/JA076i010p02213
Barth, C. A., Hord, C. W., Stewart, A. I., & Lane, A. L. (1972). Mariner 9 ultraviolet spectrometer experiment: Initial results. Science, 175, 309–312. https://doi.org/10.1126/science.175.4019.309
Bell, J. M., Bougher, S. W., & Murphy, J. R. (2007). Vertical dust mixing and the interannual variations in the Mars thermosphere. Journal of Geophysical Research, 112, E12002. https://doi.org/10.1029/2006JE002856
Bertaux, J.-L., Leblanc, F., Perrier, S., Quemerais, E., Korablev, O., Dimarellis, E., et al. (2005). Nightglow in the upper atmosphere of mars and implications for atmospheric transport. Science, 307, 566–569. https://doi.org/10.1126/science.1106957
Bhardwaj, A., & Jain, S. K. (2009). Monte Carlo model of electron energy degradation in a CO2 atmosphere. Journal of Geophysical Research, 114, A11309. https://doi.org/10.1029/2009JA014298
Bhardwaj, A., & Jain, S. K. (2013). CO Cameron band and CO 2+ UV doublet emissions in the dayglow of Venus: Role of CO in the Cameron band production. Journal of Geophysical Research: Space Physics, 118, 3660–3671. https://doi.org/10.1002/jgra.50345
Bougher, S. W., Bell, J. M., Murphy, J. R., Lopez-Valverde, M. A., & Withers, P. G. (2006). Polar warming in the mars thermosphere: Seasonal variations owing to changing insolation and dust distributions. Geophysical Research Letters, 33, L02203. https://doi.org/10.1029/2005GL024059
Bougher, S., Brain, D., Fox, J., Gonzalez-Galindo, F., Simon-Wedlund, C., & Withers, P. (2017). The atmosphere and climate of Mars, Upper neutral atmosphere and ionosphere (pp. 433–463). Cambridge: Cambridge University Press
Bougher, S. W., Engel, S., Hinson, D. P., & Forbes, J. M. (2001). Mars Global Surveyor radio science electron density profiles: Neutral atmosphere implications. Geophysical Research Letters, 28(16), 3091–3094. https://doi.org/10.1029/2001GL012884
Bougher, S. W., Engel, S., Roble, R. G., & Foster, B. (1999). Comparative terrestrial planet thermospheres 2. Solar cycle variation of global structure and winds at equinox. Journal of Geophysical Research, 104(E7), 16,591–16,611. https://doi.org/10.1029/1998JE001019
Chan, W. F., Cooper, G., & Brion, C. E. (1993). Absolute optical oscillator strengths for discrete and continuum photoabsorption of carbon monoxide (7-200 eV) and transition moments for the X 1Σ+→ A 1Π system. Chemical Physics, 170, 123–138. https://doi.org/10.1016/0301-0104(93)80098-T
Chan, W. F., Cooper, G., Sodhi, R. N. S., & Brion, C. E. (1993). Absolute optical oscillator strengths for discrete and continuum photoabsorption of molecular nitrogen (11 200 eV). Chemical Physics, 170, 81–97. https://doi.org/10.1016/0301-0104(93)80095-Q
Cox, C., Gérard, J.-C., Hubert, B., Bertaux, J.-L., & Bougher, S. W. (2010). Mars ultraviolet dayglow variability: SPICAM observations and comparison with airglow model. Journal of Geophysical Research, 115, E04010. https://doi.org/10.1029/2009JE003504
England, S. L., Liu, G., Withers, P., Yiǧit, E., Lo, D., Jain, S. S., et al. (2016). Simultaneous observations of atmospheric tides from combined in situ and remote observations at Mars from the MAVEN spacecraft. Journal of Geophysical Research: Planets, 121, 594–607. https://doi.org/10.1002/2016JE004997
Erdman, P. W., & Zipf, E. C. (1983). Electron-impact excitation of the Cameron system (a(3)pi yields x(1) sigma) transition of CO. Planetary and Space Science, 31, 317–321. https://doi.org/10.1016/0032-0633(83)90082-X
Evans, J. S., Stevens, M. H., Lumpe, J. D., Schneider, N. M., Stewart, A. I. F., Deighan, J., et al. (2015). Retrieval of CO2 and N2 in the Martian thermosphere using dayglow observations by IUVS on MAVEN. Geophysical Research Letters, 42, 9040–9049. https://doi.org/10.1002/2015GL065489
Forget, F., Hourdin, F., Fournier, R., Hourdin, C., Talagrand, O., Collins, M., et al. (1999). Improved general circulation models of the Martian atmosphere from the surface to above 80 km. Journal of Geophysical Research, 104(E10), 24,155–24,175
Fox, J. L., & Dalgarno, A. (1979). Ionization, luminosity, and heating of the upper atmosphere of Mars. Journal of Geophysical Research, 84(A12), 7315–7333. https://doi.org/10.1029/JA084iA12p07315
Furlong, J. M., & Newell, W. R. (1996). Total cross section measurement for the metastable a3Π state in CO. Journal of Physics B Atomic Molecular Physics, 29, 331–338. https://doi.org/10.1088/0953-4075/29/2/020
Gagné, M.-E., Bertaux, J.-L., González-Galindo, F., Melo, S. M. L., Montmessin, F., & Strong, K. (2013). New nitric oxide (NO) nightglow measurements with SPICAM/MEx as a tracer of Mars upper atmosphere circulation and comparison with LMD-MGCM model prediction: Evidence for asymmetric hemispheres. Journal of Geophysical Research: Planets, 118, 2172–2179. https://doi.org/10.1002/jgre.20165
González-Galindo, F., Bougher, S. W., López-Valverde, M. A., Forget, F., & Murphy, J. (2010). Thermal and wind structure of the Martian thermosphere as given by two general circulation models. Planetary and Space Science, 58, 1832–1849. https://doi.org/10.1016/j.pss.2010.08.013
González-Galindo, F., Chaufray, J. Y., Lopez-Valverde, M. A., Gilli, G., Forget, F., Leblanc, F., et al. (2013). 3D Martian ionosphere model: I. The photochemical ionosphere below 180 km. Journal of Geophysical Research: Planets, 118, 2105–2123. https://doi.org/10.1002/jgre.20150
González-Galindo, F., Forget, F., López-Valverde, M. A., Angelats i Coll, M., & Millour, E. (2009). A ground-to-exosphere martian general circulation model: 1. Seasonal, diurnal, and solar cycle variation of thermospheric temperatures. Journal of Geophysical Research: Planets, 114, E04001. https://doi.org/10.1029/2008JE003246
González-Galindo, F., López-Valverde, M. A., Angelat i Coll, M., & Forget, F. (2005). Extension of a Martian general circulation model to thermospheric altitudes: UV heating and photochemical models. Journal of Geophysical Research, 110, E09008. https://doi.org/10.1029/2004JE002312
González-Galindo, F., López-Valverde, M. A., Forget, F., García-Comas, M., Millour, E., & Montabone, L. (2015). Variability of the martian thermosphere during eight Martian years as simulated by a ground-to-exosphere global circulation model. Journal of Geophysical Research: Planets, 120, 2020–2035. https://doi.org/10.1002/2015JE004925
Gronoff, G., Lilensten, J., Simon, C., Barthélemy, M., Leblanc, F., & Dutuit, O. (2008). Modelling the Venusian airglow. Astronomy and Astrophysics, 482, 1015–1029. https://doi.org/10.1051/0004-6361:20077503
Gronoff, G., Simon Wedlund, C., Mertens, C. J., Barthélemy, M., Lillis, R. J., & Witasse, O. (2012). Computing uncertainties in ionosphere-airglow models: II. The Martian airglow. Journal of Geophysical Research, 117, A05309. https://doi.org/10.1029/2011JA017308
Houghton, J. T. (1986). The physics of atmospheres (2nd ed.). Cambridge: Cambridge University Press
Huestis, D. L., Slanger, T. G., Sharpee, B. D., & Fox, J. L. (2010). Chemical origins of the Mars ultraviolet dayglow. Faraday Discussions, 147, 307–322. https://doi.org/10.1039/c003456h
Itikawa, Y. (2002). Cross sections for electron collisions with carbon dioxide. Journal of Physical and Chemical Reference Data, 31, 749–767. https://doi.org/10.1063/1.1481879
Jain, S. K., & Bhardwaj, A. (2011). Model calculation of N 2 Vegard-Kaplan band emissions in Martian dayglow. Journal of Geophysical Research, 116, E07005. https://doi.org/10.1029/2010JE003778
Jain, S. K., & Bhardwaj, A. (2012). Impact of solar EUV flux on CO Cameron band and CO 2+ UV doublet emissions in the dayglow of Mars. Planetary and Space Science, 63–64, 110–122. https://doi.org/10.1016/j.pss.2011.08.010, Advances in Planetary Atmospheres and Exploration
Jain, S. K., Stewart, A. I. F., Schneider, N. M., Deighan, J., Stiepen, A., Evans, J. S., et al. (2015). The structure and variability of Mars upper atmosphere as seen in MAVEN/IUVS dayglow observations. Geophysical Research Letters, 42, 9023–9030. https://doi.org/10.1002/2015GL065419
Kirby, K., Constantinides, E. R., Babeu, S., Oppenheimer, M., & Victor, G. A. (1979). Photoionization and photoabsorption cross sections of He, O, N2 and O2 for aeronomic calculations. Atomic Data and Nuclear Data Tables, 23, 63. https://doi.org/10.1016/0092-640X(79)90021-4
Lawrence, G. M. (1972). Photodissociation of CO2 to produce CO(a3Π). The Journal of Chemical Physics, 56, 3435–3442. https://doi.org/10.1063/1.1677717
Leblanc, F., Chaufray, J. Y., Lilensten, J., Witasse, O., & Bertaux, J.-L. (2006). Martian dayglow as seen by the SPICAM UV spectrograph on Mars Express. Journal of Geophysical Research, 111, E09S11. https://doi.org/10.1029/2005JE002664
Lo, D. Y., Yelle, R. V., Schneider, N. M., Jain, S. K., Stewart, A. I. F., England, S. L., et al. (2015). Nonmigrating tides in the Martian atmosphere as observed by MAVEN IUVS. Geophysical Research Letters, 42, 9057–9063. https://doi.org/10.1002/2015GL066268
Mahaffy, P. R., Benna, M., Elrod, M., Yelle, R. V., Bougher, S. W., Stone, S. W., & Jakosky, B. M. (2015). Structure and composition of the neutral upper atmosphere of Mars from the MAVEN NGIMS investigation. Geophysical Research Letters, 42, 8951–8957. https://doi.org/10.1002/2015GL065329
Montabone, L., Forget, F., Millour, E., Wilson, R. R., Lewis, S., Cantor, B., et al. (2015). Eight-year climatology of dust optical depth on Mars. Icarus, 251, 65–95. https://doi.org/10.1016/j.icarus.2014.12.034
Montmessin, F., Korablev, O., Lefèvre, F., Bertaux, J.-L., Fedorova, A., Trokhimovskiy, A., et al. (2017). SPICAM on Mars Express: A 10 year in-depth survey of the Martian atmosphere. Icarus, 297, 195–216. https://doi.org/10.1016/j.icarus.2017.06.022
Navarro, T., Madeleine, J.-B., Forget, F., Spiga, A., Millour, E., Montmessin, F., et al. (2014). Global climate modeling of the martian water cycle with improved microphysics and radiatively active water ice clouds. Journal of Geophysical Research: Planets, 119, 1479–1495. https://doi.org/10.1002/2013JE004550
Schunk, R., & Nagy, A. (2000). Ionospheres: Physics, plasma physics and chemistry. UK: Cambridge University Press
Shematovich, V. I., Bisikalo, D. V., Gérard, J., Cox, C., Bougher, S. W., & Leblanc, F. (2008). Monte Carlo model of electron transport for the calculation of Mars dayglow emissions. Journal of Geophysical Research, 113, E02011. https://doi.org/10.1029/2007JE002938
Simon, C., Witasse, O., Leblanc, F., Gronoff, G., & Bertaux, J.-L. (2009). Dayglow on Mars: Kinetic modelling with SPICAM UV limb data. Planetary and Space Science, 57(8-9), 1008–1021. https://doi.org/10.1016/j.pss.2008.08.012
Sindoni, G., Formisano, V., & Geminale, A. (2011). Observations of water vapour and carbon monoxide in the Martian atmosphere with the SWC of PFS/MEX. Planetary and Space Science, 59, 149–162. https://doi.org/10.1016/j.pss.2010.12.006
Singhal, R. F., Jackman, C. H., & Green, A. E. S. (1980). Spatial aspects of low- and medium-energy electron degradation in N2. Journal of Geophysical Research, 85(A3), 1246–1254. https://doi.org/10.1029/JA085iA03p01246
Smith, M. D., Wolff, M. J., Clancy, R. T., & Murchie, S. L. (2009). Compact reconnaissance imaging spectrometer observations of water vapor and carbon monoxide. Journal of Geophysical Research, 114, E00D03. https://doi.org/10.1029/2008JE003288
Stevens, M. H., Evans, J. S., Schneider, N. M., Stewart, A. I. F., Deighan, J., Jain, S. K., et al. (2015). New observations of molecular nitrogen in the Martian upper atmosphere by IUVS on MAVEN. Geophysical Research Letters, 42, 9050–9056. https://doi.org/10.1002/2015GL065319
Stewart, A. I., Barth, C. A., Hord, C. W., & Lane, A. L. (1972). Mariner 9 ultraviolet spectrometer experiment: Structure of Mars's upper atmosphere (A 5. 3). Icarus, 17, 469–474. https://doi.org/10.1016/0019-1035(72)90012-7
Stiepen, A., Gérard, J.-C., Bougher, S., Montmessin, F., Hubert, B., & Bertaux, J.-L. (2015). Mars thermospheric scale height: CO Cameron and CO 2+ dayglow observations from Mars Express. Icarus, 245, 295–305. https://doi.org/10.1016/j.icarus.2014.09.051
Stiepen, A., Jain, S. K., Schneider, N. M., Deighan, J. I., González-Galindo, F., Gérard, J.-C., et al. (2017). Nitric oxide nightglow and Martian mesospheric circulation from MAVEN/IUVS observations and LMD-MGCM predictions. Journal of Geophysical Research: Space Physics, 122, 5782–5797. https://doi.org/10.1002/2016JA023523
Withers, P., Bougher, S. W., & Keating, G. M. (2003). The effects of topographically-controlled thermal tides in the Martian upper atmosphere as seen by the MGS accelerometer. Icarus, 164, 14–32. https://doi.org/10.1016/S0019-1035(03)00135-0
Withers, P., & Pratt, R. (2013). An observational study of the response of the upper atmosphere of Mars to lower atmospheric dust storms. Icarus, 225, 378–389. https://doi.org/10.1016/j.icarus.2013.02.032