[en] A biosensor based on novel SERS tags, consisting of gold nanorods (GNRs) complexed with oligonucleotide aptamers and the Raman reporters, was developed for the sensitive and simultaneous detection of different food pathogens. The aptamers not only act as bio-recognition molecules, but along with the Raman reporters, induce the GNRs to grow to specific shapes, which in turn enhance the Raman signal and facilitate sensitive detection. Signal interference during the simultaneous detection of pathogens is avoided, due to the stable anchored aptamers and embedded Raman reporters. We combined the novel SERS tags with antibody-modified magnetic nanoparticles to create a biosensor capable of simultaneous detection of Escherichia coli O157:H7 and Salmonella typhimurium with good linear response (101 to 106 cfu/mL), high detection sensitivity (<8 cfu/mL) and recovery rate (95.26–107.88%) in spiked food samples. This strategy achieves the goal of sensitive and simultaneous quantitative detection of pathogens.
National Natural Science Foundation of China (Nos. 31401581 and 31901776) Agricultural Science Innovation Program (S2019XK02) Central Public-interest Scientific Institution Basal Research Fund (No. Y2019PT20-01) Elite Youth Program of Chinese Academy of Agricultural Sciences
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Jiang, T., Song, Y., Wei, T., Li, H., Du, D., Zhu, M., et al. Sensitive detection of Escherichia coli O157:H7 using Pt-Au bimetal nanoparticles with peroxidase-like amplification. Biosens. Bioelectron. 77 (2016), 687–694, 10.1016/j.bios.2015.10.017.
Zeinhom, M.M.A., Wang, Y., Song, Y., Zhu, M., Lin, Y., Du, D., A portable smart-phone device for rapid and sensitive detection ofE. coli O157:H7 in Yoghurt and Egg. Biosens. Bioelectron. 99 (2018), 479–485, 10.1016/j.bios.2017.08.002.
Arnold, M.E., Carrique-Mas, J.J., McLaren, I., Davies, R.H., A comparison of pooled and individual bird sampling for detection of Salmonella in commercial egg laying flocks. Prev. Vet. Med. 99 (2011), 176–184, 10.1016/j.prevetmed.2010.12.007.
Can, H., Celik, T.H., Detection of enterotoxigenic and antimicrobial resistant S. Aureus in Turkish cheeses. Food Control 24 (2012), 100–103, 10.1016/j.foodcont.2011.09.009.
Zhao, X., Lin, C., Wang, J., Oh, D.H., Advances in rapid detection methods for foodborne pathogens. J. Microbiol. Biotechnol. 24 (2014), 297–312, 10.4014/jmb.1310.10013.
Yeni, F., Acar, S., Polat, Ö.G., Soyer, Y., Alpas, H., Rapid and standardized methods for detection of foodborne pathogens and mycotoxins on fresh produce. Food Control 40 (2014), 359–367, 10.1016/j.foodcont.2013.12.020.
Min, F., Yong, Q., Wang, W., Hua, K., Wang, L., Xu, C., Development of a monoclonal antibody-based ELISA to detect Escherichia coli O157:H7. Food Agric. Immunol. 24 (2013), 481–487, 10.1080/09540105.2012.716026.
Safavieh, M., Ahmed, M.U., Tolba, M., Zourob, M., Microfluidic electrochemical assay for rapid detection and quantification of Escherichia coli. Biosens. Bioelectron. 31 (2012), 523–528, 10.1016/j.bios.2011.11.032.
Su, X., Li, Y., A QCM immunosensor for Salmonella detection with simultaneous measurements of resonant frequency and motional resistance. Biosens. Bioelectron. 21 (2005), 840–848, 10.1016/j.bios.2005.01.021.
Karoonuthaisiri, N., Charlermroj, R., Morton, M.J., Oplatowska-Stachowiak, M., Grant, I.R., Elliott, C.T., Development of a M13 bacteriophage-based SPR detection using Salmonella as a case study. Sens. Actuators B Chem. 190 (2014), 214–220, 10.1016/j.snb.2013.08.068.
Chen, J., Andler, S.M., Goddard, J.M., Nugen, S.R., Rotello, V.M., Integrating recognition elements with nanomaterials for bacteria sensing. Chem. Soc. Rev. 46 (2017), 1272–1283, 10.1039/c6cs00313c.
Liu, Y., Zhou, H., Hu, Z., Yu, G., Yang, D., Zhao, J., Label and label-free based surface-enhanced Raman scattering for pathogen bacteria detection: a review. Biosens. Bioelectron. 94 (2017), 131–140, 10.1016/j.bios.2017.02.032.
Zhang, C., Wang, C., Xiao, R., Tang, L., Huang, J., Wu, D., et al. Sensitive and specific detection of clinical bacteria via vancomycin-modified Fe3O4@Au nanoparticles and aptamer-functionalized SERS tags. J. Mater. Chem. B Mater. Biol. Med. 6 (2018), 3751–3761, 10.1039/c8tb00504d.
Zhang, H., Ma, X., Liu, Y., Duan, N., Wu, S., Wang, Z., et al. Gold nanoparticles enhanced SERS aptasensor for the simultaneous detection of Salmonella typhimurium and Staphylococcus aureus. Biosens. Bioelectron. 74 (2015), 872–877, 10.1016/j.bios.2015.07.033.
Lin, L., Zhang, Q., Li, X., Qiu, M., Jiang, X., Jin, W., et al. Electron transport across plasmonic molecular nanogaps interrogated with surface-enhanced Raman scattering. ACS Nano 12 (2018), 6492–6503, 10.1021/acsnano.7b08224.
Graham, D., Moskovits, M., Tian, Z.Q., SERS - facts, figures and the future. Chem. Soc. Rev. 46 (2017), 3864–3865, 10.1039/c7cs90060k.
Li, M., Zhang, J., Suri, S., Sooter, L.J., Ma, D., Wu, N., Detection of adenosine triphosphate with an aptamer biosensor based on surface-enhanced Raman scattering. Anal. Chem. 84 (2012), 2837–2842, 10.1021/ac203325z.
Zhao, Y., Zhao, J., Shan, G., Yan, D., Chen, Y., Liu, Y., SERS-active liposome@Ag/Au nanocomposite for NIR light-driven drug release. Colloids Surf. B Biointerfaces 154 (2017), 150–159, 10.1016/j.colsurfb.2017.03.016.
Williamson, B. Jr, Hattery, R.R., Stephens, D.H., Sheedy, P.F. 2nd, Computed tomography of the kidneys. Semin. Roentgenol. 13 (1978), 249–255, 10.1007/s00604-017-2298-9.
Le, T., Chang, P., Benton, D., Mccauley, J.W., Iqbal, M., Aeg, C., Dual recognition element lateral flow assay (DRELFA) - towards multiplex strain specific influenza virus detection. Anal. Chem. 89 (2017), 6781–6786, 10.1021/acs.analchem.7b01149.
Kim, K., Lee, H.B., Lee, Y.M., Shin, K.S., Rhodamine B isothiocyanate-modified Ag nanoaggregates on dielectric beads: a novel surface-enhanced Raman scattering and fluorescent imaging material. Biosens. Bioelectron. 24 (2009), 1864–1869, 10.1016/j.bios.2008.09.017.
Guerrini, L., Graham, D., Molecularly-mediated assemblies of plasmonic nanoparticles for surface-enhanced Raman spectroscopy applications. Chem. Soc. Rev. 41 (2012), 7085–7107, 10.1039/c2cs35118h.
Lee, J.H., Kim, G.H., Nam, J.M., Directional synthesis and assembly of bimetallic nanosnowmen with DNA. J. Am. Chem. Soc. 134 (2012), 5456–5459, 10.1021/ja2121525.
Oh, J.W., Lim, D.K., Kim, G.H., Suh, Y.D., Nam, J.M., Thiolated DNA-based chemistry and control in the structure and optical properties of plasmonic nanoparticles with ultrasmall interior nanogap. J. Am. Chem. Soc. 136 (2014), 14052–14059, 10.1021/ja504270d.
Shen, J., Xu, L., Wang, C., Pei, H., Tai, R., Song, S., et al. Dynamic and quantitative control of the DNA-mediated growth of gold plasmonic nanostructures. Angew. Chem., Int. Ed. 53 (2014), 8338–8342, 10.1002/anie.201402937.
Demers, L.M., Ostblom, M., Zhang, H., Jang, N.H., Liedberg, B., Mirkin, C.A., Thermal desorption behavior and binding properties of DNA bases and nucleosides on gold. J. Am. Chem. Soc. 124 (2002), 11248–11249, 10.1021/ja0265355.
Song, T., Tang, L., Tan, L., Wang, X., Satyavolu, N.S., Xing, H., et al. DNA-encoded tuning of geometric and plasmonic properties of nanoparticles growing from gold nanorod seeds. Angew. Chem., Int. Ed. 54 (2015), 8114–8118, 10.1002/anie.201500838.
Wang, Z., Tang, L., Tan, L.H., Li, J., Lu, Y., Discovery of the DNA “Genetic Code” for abiological gold nanoparticle morphologies. Angew. Chem., Int. Ed. 51 (2012), 9078–9082, 10.1002/anie.
Li, J., Zhou, J., Jiang, T., Wang, B., Gu, M., Petti, L., et al. Controllable synthesis and SERS characteristics of hollow sea-urchin gold nanoparticles. Phys. Chem. Chem. Phys. 16 (2014), 25601–25608, 10.1039/c4cp04017a.
Li, Y., Liu, X., Jiang, D., Yu, Z., Tian, D., Lu, C., et al. One-pot synthesis of a DNA-anchored SERS nanoprobe with simultaneous nanostructural tuning and Raman reporter encoding. RSC Adv. 7 (2017), 5063–5066, 10.1039/c6ra26580d.
Yao, L., Wang, L., Huang, F., Cai, G., Xi, X., Lin, J., A microfluidic impedance biosensor based on immunomagnetic separation and urease catalysis for continuous-flow detection of E. Coli O157:H7. Sens. Actuators B Chem. 259 (2018), 1013–1021, 10.1016/j.snb.2017.12.110.
Joshi, R., Janagama, H., Dwivedi, H.P., Senthil Kumar, T.M., Jaykus, L.A., Schefers, J., et al. Selection, characterization, and application of DNA aptamers for the capture and detection of Salmonella enterica serovars. Mol. Cell. Probes 23 (2009), 20–28, 10.1016/j.mcp.2008.10.006.
Wang, Y., Ravindranath, S., Irudayaraj, J., Separation and detection of multiple pathogens in a food matrix by magnetic SERS nanoprobes. Anal. Bioanal. Chem. 399 (2011), 1271–1278, 10.1007/s00216-010-4453-6.
Yuan, K., Mei, Q., Guo, X., Xu, Y., Yang, D., Sanchez, B.J., et al. Antimicrobial peptide based magnetic recognition elements and Au@Ag-GO SERS tags with stable internal standards: a three in one biosensor for isolation, discrimination and killing of multiple bacteria in whole blood. Chem. Sci. 9 (2018), 8781–8795, 10.1039/c8sc04637a.
Formisanoa, N., Bhallaa, N., Heeranb, M., Martinezb, J.R., Sarkarb, A., Laabeic, M., et al. Inexpensive and fast pathogenic bacteria screening using field-effect transistors. Biosens. Bioelectron. 85 (2016), 103–109, 10.1016/j.bios.2016.04.063.
Funari, N.R., Bhalla, N., Chu, K.Y., Söderström, B., Shen, A.Q., Nanoplasmonics for real-time and label-free monitoring of microbial biofilm formation. ACS Sens. 3 (2018), 1499–1509, 10.1021/acssensors.8b00287.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.