volcano seismicity; long-period activity; recurrence distributions; degassing process
Abstract :
[en] The aim of this work is to improve our understanding of the long‐period (LP) source mechanism at Mount Etna (Italy) through a statistical analysis of detailed LP catalogues. The behavior of LP activity is compared with the empirical laws governing earthquake recurrence, in order to investigate whether any relationships exist between these two apparently different earthquake classes. We analyzed a family of 8894 events detected during a temporary experiment in August 2005. For that time interval, the LP activity is sustained in time and the volcano did not exhibit any evident sign of unrest. The completeness threshold of the catalogue is established through a detection test based on synthetic waveforms. The retrieved amplitude distribution differs significantly from the Gutenberg‐Richter law, and the interevent times distribution does not follow the typical γ law, expected for tectonic activity. In order to compare these results with a catalogue for which the source mechanism is well established, we applied the same procedure to a data set from Stromboli Volcano, where recurrent LP activity is closely related to very‐long‐period pulses, in turn associated with the summit explosions. Our results indicate that the two catalogues exhibit similar behavior in terms of amplitude and interevent time distributions. This suggests that the Etna's LP signals are most likely driven by stress changes caused by an intermittent degassing process occurring at depth, similar to that which drives the summit explosions at Stromboli Volcano.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Cauchie, Léna ; Université de Liège - ULiège > Département de géologie > Géologie de l'environnement
Saccorotti, Gilberto; Istituto Nazionale di Geofisica e Vulcanologia > Pisa
Bean, Chris; Dublin Institute of Advanced Studies
Language :
English
Title :
Amplitude and Recurrence Time of LP activity at Mt. Etna, Italy
Publication date :
September 2015
Journal title :
Journal of Geophysical Research. Solid Earth
ISSN :
2169-9313
eISSN :
2169-9356
Publisher :
Wiley, Hoboken, United States - New Jersey
Volume :
120
Issue :
9
Pages :
6474-6486
Peer reviewed :
Peer Reviewed verified by ORBi
European Projects :
FP7 - 289976 - NEMOH - Numerical, Experimental and stochastic Modelling of vOlcanic processes and Hazard: an Initial Training Network for the next generation of European volcanologists
Aki, K., M. Fehler, and, S. Das, (1977), Source mechanism of volcanic tremor: Fluid-driven crack models and their application to the Kilauea eruption, J. Volcanol. Geotherm. Res., 2, 259-287.
Amitrano, D., (2003), Brittle-ductile transition and associated seismicity: Experimental and numerical studies and relationships with the b-value, J. Geophys. Res., 108 (B1), 2044, doi: 10.1029/2001JB000680.
Arciniega-Ceballos, A., B. Chouet, and, P. Dawson, (2003), Long-period events and tremor at Popocatepetl volcano (1994-2000) and their broadband characteristics, Bull. Volcanol., 65 (2), 124-135.
Aster, R., D. Zandomeneghi, S. Mah, S. McNamara, D. B. Henderson, H. Knox, and, K. Jones, (2008), Moment tensor inversion of very long period seismic signals from Strombolian eruptions of Erebus volcano, J. Volcanol. Geotherm. Res., 177 (3), 635-647.
Bak, P., K. Christensen, L. Danon, and, T. Scanlon, (2002), Unified scaling law for earthquakes, Phys. Rev. Lett., 88 (17), 178,501.
Bean, C. J., I. Lokmer, and, G. Obrien, (2008), Influence of near-surface volcanic structure on long-period seismic signals and on moment tensor inversions: Simulated examples from Mount Etna, J. Geophys. Res., 113, B08308, doi: 10.1029/2007JB005468.
Bean, C. J., L. De Barros, I. Lokmer, J.-P. Métaxian, G. OBrien, and, S. Murphy, (2014), Long-period seismicity in the shallow volcanic edifice formed from slow-rupture earthquakes, Nat. Geosci., 7 (1), 71-75.
Blackburn, E. A., L. Wilson, and, R. J. Sparks, (1976), Mechanisms and dynamics of Strombolian activity, J. Geol. Soc., 132 (4), 429-440.
Cesca, S., J. Battaglia, T. Dahm, E. Tessmer, S. Heimann, and, P. Okubo, (2008), Effects of topography and crustal heterogeneities on the source estimation of LP event at Kilauea Volcano, Geophys. J. Int., 172 (3), 1219-1236.
Chouet, B., (1985), Excitation of a buried magmatic pipe: A seismic source model for volcanic tremor, J. Geophys. Res., 90 (B2), 1881-1893, doi: 10.1029/JB090iB02p01881.
Chouet, B., (1986), Dynamics of a fluid-driven crack in three dimensions by the finite difference method, J. Geophys. Res., 91 (B14), 13,967-13,992.
Chouet, B., (1988), Resonance of a fluid-driven crack: Radiation properties and implications for the source of long-period events and harmonic tremor, J. Geophys. Res., 93 (B5), 4375-4400.
Chouet, B., (1992), A seismic model for the source of long-period events and harmonic tremor, in Volcanic Seismology, pp. 133-156, Springer, Berlin.
Chouet, B., (1996), New methods and future trends in seismological volcano monitoring, in Monitoring and Mitigation of Volcano Hazards, pp. 23-97, Springer, New York.
Chouet, B., G. Saccorotti, P. Dawson, M. Martini, R. Scarpa, G. De Luca, G. Milana, and, M. Cattaneo, (1999), Broadband measurements of the sources of explosions at Stromboli Volcano, Italy, Geophys. Res. Lett., 26 (13), 1937-1940, doi: 10.1029/1999GL900400.
Chouet, B., P. Dawson, T. Ohminato, M. Martini, G. Saccorotti, F. Guidicepietro, G. De Luca, G. Milana, and, R. Scarpa, (2003), Correction to "Source mechanisms of explosions at Stromboli Volcano, Italy, determined from moment-tensor inversions of very-long-period data," J. Geophys. Res., 108 (B7), 2331, doi: 10.1029/2003JB002535.
Chouet, B., P. Dawson, and, M. Martini, (2008), Shallow-conduit dynamics at Stromboli Volcano, Italy, imaged from waveform inversions, Geol. Soc. London, Spec. Publ., 307 (1), 57-84.
Corral, A., (2003), Local distributions and rate fluctuations in a unified scaling law for earthquakes, Phys. Rev. E, 68 (3), 035102.
Corral, A., (2004), Long-term clustering, scaling, and universality in the temporal occurrence of earthquakes, Phys. Rev. Lett., 92 (10), 108501.
Davi, R., G. S. O'Brien, I. Lokmer, C. J. Bean, P. Lesage, and, M. M. Mora, (2010), Moment tensor inversion of explosive long period events recorded on Arenal Volcano, Costa Rica, constrained by synthetic tests, J. Volcanol. Geotherm. Res., 194 (4), 189-200.
De Barros, L., I. Lokmer, C. J. Bean, G. S. O'Brien, G. Saccorotti, J.-P. Métaxian, L. Zuccarello, and, D. Patanè, (2011), Source mechanism of long-period events recorded by a high-density seismic network during the 2008 eruption on Mt Etna, J. Geophys. Res., 116, B01304, doi: 10.1029/2010JB007629.
De Martino, S., M. Falanga, M. Palo, P. Montalto, and, D. Patanè, (2011), Statistical analysis of the volcano seismicity during the 2007 crisis of Stromboli, Italy, J. Geophys. Res., 116, B09312, doi: 10.1029/2010JB007503.
Earle, P. S., and, P. M. Shearer, (1994), Characterization of global seismograms using an automatic-picking algorithm, Bull. Seismol. Soc. Am., 84 (2), 366-376.
Fujita, E., Y. Ida, and, J. Oikawa, (1995), Eigen oscillation of a fluid sphere and source mechanism of harmonic volcanic tremor, J. Volcanol. Geotherm. Res., 69, 365-378.
James, M. R., S. J. Lane, B. Chouet, and, J. S. Gilbert, (2004), Pressure changes associated with the ascent and bursting of gas slugs in liquid-filled vertical and inclined conduits, J. Volcanol. Geotherm. Res., 129, 61-82.
James, M. R., S. J. Lane, and, B. A. Chouet, (2006), Gas slug ascent through changes in conduit diameter: Laboratory insights into a volcano-seismic source process in low-viscosity magmas, J. Geophys. Res., 111, B05201, doi: 10.1029/2005JB003718.
Jaupart, C., and, S. Vergniolle, (1988), Laboratory models of Hawaiian and Strombolian eruptions, Nature, 331 (6151), 58-60.
Kanasewich, E. R., (1981), Time Sequence Analysis in Geophysics, Univ. of Alberta, Edmonton, Alberta.
Kumagai, H., and, B. A. Chouet, (2001), The dependence of acoustic properties of a crack on the mode and geometry, Geophys. Res. Lett., 28, 3325-3328, doi: 10.1029/2001GL013025.
Kumagai, H., B. A. Chouet, and, M. Nakano, (2002), Temporal evolution of a hydrothermal system in Kusatsu-Shirane Volcano, Japan, inferred from the complex frequencies of long-period events, J. Geophys. Res., 107 (B10), 2236, doi: 10.1029/2001JB000653.
Kumagai, H., B. A. Chouet, and, P. B. Dawson, (2005), Source process of a long-period event at Kilauea volcano, Hawaii, Geophys. J. Int., 161 (1), 243-254.
Lokmer, I., C. J. Bean, G. Saccorotti, and, D. Patane, (2007), Moment-tensor inversion of LP events recorded on Etna in 2004 using constraints obtained from wave simulation tests, Geophys. Res. Lett., 34, L22316, doi: 10.1029/2007GL031920.
Matoza, R. S., and, B. A. Chouet, (2010), Subevents of long-period seismicity: Implications for hydrothermal dynamics during the 2004-2008 eruption of Mount St. Helens, J. Geophys. Res., 115, B12206, doi: 10.1029/2010JB007839.
Molchan, G., (2005), Interevent time distribution in seismicity: A theoretical approach, Pure Appl. Geophys., 162 (6), 1135-1150.
Nakano, M., H. Kumagai, and, B. A. Chouet, (2003), Source mechanism of long-period events at Kusatsu-Shirane Volcano, Japan, inferred from waveform inversion of the effective excitation functions, J. Volcanol. Geotherm. Res., 122 (3-4), 149-164.
Neuberg, J., (2000), Characteristics and causes of shallow seismicity in andesite volcanoes, Philos. Trans. R. Soc., A, 358, 1533-1546.
Neuberg, J., and, R. Luckett, (1996), Seismo-volcanic sources on Stromboli Volcano, Ann. Geophys., 39 (2), 377-391.
Neuberg, J., R. Luckett, M. Ripepe, and, T. Braun, (1994), Highlights from a seismic broadband array on Stromboli Volcano, Geophys. Res. Lett., 21 (9), 749-752, doi: 10.1029/94GL00377.
Neuberg, J., R. Luckett, B. Baptie, and, K. Olsen, (2000), Models of tremor and low-frequency earthquake swarms on Montserrat, J. Volcanol. Geotherm. Res., 101, 83-104.
Neuberg, J., H. Tuffen, L. Collie, D. Green, T. Powell, and, D. Dingwell, (2006), The trigger mechanism of low-frequency earthquakes on Montserrat, J. Volcanol. Geotherm. Res., 153 (1), 37-50.
Parfitt, E., (2004), A discussion of the mechanisms of explosive basaltic eruptions, J. Volcanol. Geotherm. Res., 134, 77-107.
Ripepe, M., M. Rossi, and, G. Saccorotti, (1993), Image processing of explosive activity at Stromboli, J. Volcanol. Geotherm. Res., 54 (3), 335-351.
Rosi, M., M. Pistolesi, A. Bertagnini, P. Landi, M. Pompilio, and, A. Di Roberto, (2013), Chapter 14 Stromboli Volcano, Aeolian Islands (Italy): Present eruptive activity and Hazards, Geol. Soc. London, Mem., 37, 473-490.
Shearer, P. M., (2009), Introduction to Seismology, Cambridge Univ. Press, Cambridge.
Taddeucci, J., D. M. Palladino, G. Sottili, D. Bernnini, D. Andronico, and, A. Cristaldi, (2013), Linked frequency and intensity of persistent volcanic activity at Stromboli (Italy), Geophys. Res. Lett., 40, 3384-3388, doi: 10.1002/grl.50652.
Traversa, P., and, J.-R. Grasso, (2010), How is volcano seismicity different from tectonic seismicity?, Bull. Seismol. Soc. Am., 100, 1755-1769.
Tuffen, H., D. B. Dingwell, and, H. Pinkerton, (2003), Repeated fracture and healing of silicic magma generate flow banding and earthquakes?, Geology, 31 (12), 1089-1092.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.