[en] The injection of fluid in the upper crust, notably for the development or exploitation of geothermal reservoirs, is often associated with the onset of induced seismicity. Although this process has been largely studied, it is not clear how the injected fluid influences the rupture size of the induced events. Here we re-investigate the induced earthquakes that occurred during an injection at Soultz-sous-Forêts, France in 1993 and studied the link between the injected fluid and the source properties of the numerous induced earthquakes. We take advantage that deep borehole accelerometers were running in the vicinity of the injection site. We estimate the moment and radius of all recorded events based on a spectral analysis and classify them into 663 repeating sequences. We show that the events globally obey the typical scaling law between radius and moment. However, at the scale of the asperity, fluctuations of the moment are important while the radii remain similar suggesting a variable stress drop or a mechanism that prevents the growth of the rupture. This is confirmed by linking the event source size to the geomechanical history of the reservoir. In areas where aseismic slip on pre-existing faults has been evidenced, we observed only small rupture sizes whereas in part of the reservoir where seismicity is related to the creation of new fractures, a wider distribution and larger rupture sizes are promoted. Implications for detecting the transition between events related to pre-existing faults and the onset of fresh fractures are discussed.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Cauchie, Léna ; Université de Liège - ULiège > Département de géologie > Géologie de l'environnement
Lengliné, Olivier; University of Strasbourg > EOST
Schmittbuhl, Jean; University of Strasbourg/CNRS > EOST
Language :
English
Title :
Seismic asperity size evolution during fluid injection: case study of the 1993 Soultz-sous-Forêts injection
Publication date :
03 February 2020
Journal title :
Geophysical Journal International
ISSN :
0956-540X
Publisher :
Geological Society by Blackwell Scientific, United Kingdom
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Aki, K., 1967. Scaling law of seismic spectrum, J. geophys. Res., 72(4), 1217-1231.
Baria, R., Baumgartner, J. & Gérard, A., 1996. European hot dry rock programme 1992-1995, Extended Summary of the Final Report to EC (DGXII), contract JOU2-CT92-0115.
Bernard, P., 2001. From the search of 'precursors' to the research on 'crustal transients', Tectonophysics, 338(3-4), 225-232.
Beroza, G.C. & Ide, S., 2011. Slow earthquakes and nonvolcanic tremor, Ann. Rev. Earth planet. Sci., 39, 271-296.
Bouchon, M., Karabulut, H., Aktar, M., Özalaybey, S., Schmittbuhl, J. & Bouin, M.-P., 2011. Extended nucleation of the 1999 Mw 7.6 Izmit earthquake, Science, 331(6019), 877-880.
Bourouis, S., 2004, Sismicité induite et comportement mécanique d'un massif granitique fracturé par injection d'eau. Application au site géothermique de Soultz-sous-Forets, PhD thesis, IPGP.
Bourouis, S.&Bernard, P., 2007. Evidence for coupled seismic and aseismic fault slip during water injection in the geothermal site of Soultz (France), and implications for seismogenic transients, J. geophys. Int., 169(2), 723-732.
Brune, J., 1970. Tectonic stress and the spectra of seismic shear waves from earthquakes, J. geophys. Res., 75(26), 4997-5009.
Candela, T.,Wassing, B., Ter Heege, J. & Buijze, L., 2018. How earthquakes are induced, Science, 360(6389), 598-600.
Cornet, F. & Morin, R., 1997. Evaluation of hydromechanical coupling in a granite rock mass from a high-volume, high-pressure injection experiment: Le mayet de Montagne, France, Int. J. Rock Mech. Min. Sci., 34(3-4), 207-e1.
Cornet, F., Helm, J., Poitrenaud, H. & Etchecopar, A., 1997. Seismic and aseismic slips induced by large-scale fluid injections, in Seismicity Associated with Mines, Reservoirs and Fluid Injections, pp. 563-583, Springer.
Cornet, F., Bérard, T. & Bourouis, S., 2007. How close to failure is a granite rock mass at a 5 km depth?, Int. J. Rock Mech. Min. Sci., 44(1), 47-66.
Cornet, F.H., 2015. Elements of Crustal Geomechanics, Cambridge Univ. Press. Cornet, F.H., 2016. Seismic and aseismic motions generated by fluid injections, Geomech. Ener. Environ., 5, 42-54.
Corral, A., 2004. Long-term clustering, scaling, and universality in the temporal occurrence of earthquakes, Phys. Rev. Lett., 92(10), 108501.
Dahm, T. et al., 2013. Recommendation for the discrimination of humanrelated and natural seismicity, J. Seismol., 17(1), 197-202.
Davidsen, J., Stanchits, S. & Dresen, G., 2007. Scaling and universality in rock fracture, Phys. Rev. Lett., 98(12), 125502.
Earle, P. & Shearer, P., 1994. Characterization of global seismograms using an automatic-picking algorithm, Bull. seism. Soc. Am., 84(2), 366-376.
Elst, N.J., Page, M.T., Weiser, D.A., Goebel, T.H. & Hosseini, S.M., 2016. Induced earthquake magnitudes are as large as (statistically) expected, J. geophys. Res., 121(6), 4575-4590.
Eshelby, J., 1957. The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proc. R. Soc. Lond., A, 241(1226), 376-396.
Evans, K. et al., 2005. Microseismicity and permeability enhancement of hydrogeologic structures during massive fluid injections into granite at 3 km depth at the Soultz HDR site, J. geophys. Int., 160(1), 388-412.
Gaucher, E., 1998, Comportement hydromécanique d'un massif fracturé: apport de la microsismicité induite. Application au site géothermique de Soultz-sous-Forets, PhD thesis, IPGS-Paris Diderot.
Giardini, D., 2009. Geothermal quake risks must be faced, Nature, 462(7275), 848.
Got, J.-L. & Frechet, J., 1993. Origins of amplitude variations in seismic doublets: source or attenuation process?, J. geophys. Int., 114(2), 325-340.
Grigoli, F. et al., 2017. Current challenges in monitoring, discrimination, and management of induced seismicity related to underground industrial activities: a European perspective, Rev. Geophys., 55(2), 310-340.
Grigoli, F. et al., 2018. The november 2017 Mw 5.5 Pohang earthquake: a possible case of induced seismicity in South Korea, Science, 360(6392), 1003-1006.
Guglielmi, Y., Cappa, F., Avouac, J.-P., Henry, P. & Elsworth, D., 2015. Seismicity triggered by fluid injection-induced aseismic slip, Science, 348(6240), 1224-1226.
Hanks, T.C. & Kanamori, H., 1979. A moment magnitude scale, J. geophys. Res., 84(B5), 2348-2350.
Huenges, E. & Ledru, P., 2011. Geothermal Energy Systems: Exploration, Development, and Utilization, John Wiley & Sons.
Jaeger, J.C., Cook, N.G. & Zimmerman, R., 2009. Fundamentals of Rock Mechanics, John Wiley & Sons.
Jones, R., Beauce, A., Jupe, A., Fabriol, H. & Dyer, C., 1995. Imaging induced seismicity during the 1993 injection test at Soultz-sous-Forets, in World Geothermal Congress. International Geothermal Association, pp. 2665-2669.
Kanamori, H. & Anderson, D., 1975. Theoretical basis of some empirical relations in seismology, Bull. seism. Soc. Am., 65(5), 1073.
Kim, K.-H., Ree, J.-H., Kim, Y., Kim, S., Kang, S.Y. & Seo, W., 2018. Assessing whether the 2017 mw 5.4 pohang earthquake in south korea was an induced event, Science, 360(6392), 1007-1009.
Lengliné, O., Lamourette, L., Vivin, L., Cuenot, N. & Schmittbuhl, J., 2014. Fluid-induced earthquakes with variable stress drop, J. geophys. Res., 119(12), 8900-8913.
Lin, Y.-Y., Ma, K.-F., Kanamori, H., Song, T., Lapusta, N. & Tsai, V., 2016. Evidence for non-self-similarity of microearthquakes recorded at a Taiwan borehole seismometer array, J. geophys. Int., 206(2), 757-773.
Lockner, D., Byerlee, J., Kuksenko, V., Ponomarev, A. & Sidorin, A., 1991. Quasi-static fault growth and shear fracture energy in granite, Nature, 350(6313), 39.
Madariaga, R., 1976. Dynamics of an expanding circular fault, Bull. seism. Soc. Am., 66(3), 639-666.
McGarr, A., 2014. Maximum magnitude earthquakes induced by fluid injection, J. geophys. Res., 119(2), 1008-1019.
Moriya, H., Niitsuma, H. & Baria, R., 2003. Multiplet-clustering analysis reveals structural details within the seismic cloud at the Soultz geothermal field, France, Bull. seism. Soc. Am., 93(4), 1606-1620.
Ogata, Y. & Katsura, K., 1993. Analysis of temporal and spatial heterogeneity of magnitude frequency distribution inferred from earthquake catalogues, J. geophys. Int., 113(3), 727-738.
Olasolo, P., Júarez, M.,Morales,M., Liarte, I. et al., 2016. Enhanced geothermal systems (EGS): a review, Renew. Sustain. Ener. Rev., 56, 133-144.
Poupinet, G., Ellsworth, W. & Frechet, J., 1984. Monitoring velocity variations in the crust using earthquake doublets: an application to the Calaveras Fault, California, J. geophys. Res., 89(B7), 5719-5731.
Schmittbuhl, J., Lengliné, O., Cornet, F., Cuenot, N. & Genter, A., 2014. Induced seismicity in egs reservoir: the creep route, Geother. Ener., 2(1), 14.
Scholz, C.H., 1998. Earthquakes and friction laws, Nature, 391(6662), 37-42.
Shapiro, S., 2018. Seismogenic index of underground fluid injections and productions, J. geophys. Res., 123(9), 7983-7997.
Staszek, M., Orlecka-Sikora, B., Leptokaropoulos, K., Kwiatek, G. & Martínez-Garźon, P., 2017. Temporal static stress drop variations due to injection activity at the geysers geothermal field, california, Geophys. Res. Lett., 44(14), 7168-7176.
Tarantola, A., 2005. Inverse Problem Theory and Methods for Model Parameter Estimation, Vol. 89, SIAM.
Vallier, B., Magnenet, V., Schmittbuhl, J. & Fond, C., 2019. Large scale hydro-thermal circulation in the deep geothermal reservoir of Soultzsous-Forets (France), Geothermics, 78, 154-169.
Villeneuve, M.C., Heap, M.J., Kushnir, A.R., Qin, T., Baud, P., Zhou, G. & Xu, T., 2018. Estimating in situ rock mass strength and elastic modulus of granite from the Soultz-sous-Forets geothermal reservoir (France), Geother. Ener., 6(1), 11.
Wei, S. et al., 2015. The 2012 Brawley swarmtriggered by injection-induced aseismic slip, Earth planet. Sci. Lett., 422, 115-125.
Zang, A., Wagner, F.C., Stanchits, S., Janssen, C. & Dresen, G., 2000. Fracture process zone in granite, J. geophys. Res., 105(B10), 23 651-23 661.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.