Strombolian explosions; GPinSAR monitoring; volcanic tremor; very long period activity
Abstract :
[en] We present the integration of seismic and Ground‐Based Interferometric Synthetic Aperture Radar system (GBInSAR) displacement data at Stromboli Volcano. Ground deformation in the area of summit vents is positively correlated with both seismic tremor amplitude and cumulative amplitudes of very long period (VLP) signals associated with Strombolian explosions. Changes in VLP amplitudes precede by a few days the variations in ground deformation and seismic tremor. We propose a model where the arrival of fresh, gas‐rich magma from depth enhances gas slug formation, promoting convection and gas transfer throughout the conduit system. At the shallowest portion of the conduit, an increase in volatile content causes a density decrease, expansion of the magmatic column and augmented degassing activity, which respectively induce inflation of the conduit, and increased tremor amplitudes. The temporal delay between increase of VLP and tremor amplitudes/conduit inflation can be interpreted in terms of the different timescales characterizing bulk gas transfer versus slug formation and ascent.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Di Traglia, Federico; Università degli Studi di Firenze - UniFI > Department of Earth Sciences
Cauchie, Léna ; Université de Liège - ULiège > Département de géologie > Géologie de l'environnement
Saccorotti, Gilberto; Istituto Nazionale di Geofisica e Vulcanologia > Pisa
Casagli, Nicola; Università degli Studi di Firenze - UniFI
Language :
English
Title :
Decrypting geophysical signals at Stromboli Volcano (Italy): Integration of seismic and Ground‐Based InSAR displacement data
Publication date :
April 2014
Journal title :
Geophysical Research Letters
ISSN :
0094-8276
eISSN :
1944-8007
Publisher :
Wiley, Washington, United States - District of Columbia
Aiuppa, A., A. Bertagnini, N. Métrich, R. Moretti, A. Di Muro, M. Liuzzo, and, G. Tamburello, (2010), A model of degassing for Stromboli Volcano, Earth Planet. Sci. Lett., 295 (1), 195-204.
Aloisi, M., A. Bonforte, M. Mattia, and, G. Puglisi, (2008), Ground deformations related to the effusive eruptions of Stromboli: The 2002-2003 case, in The Stromboli Volcano: An Integrated Study of the 2002-2003 Eruption, Geophys. Monogr. Ser., vol. 182, edited by, S. Calvari, et al., pp. 247-257, AGU, Washington, D. C.
Antonello, G., N. Casagli, P. Farina, D. Leva, G. Nico, A. J. Sieber, and, D. Tarchi, (2004), Ground-based SAR interferometry for monitoring mass movements, Landslides, 1 (1), 21-28.
Barberi, F., M. Rosi, and, A. Sodi, (1993), Volcanic hazard assessment at Stromboli based on review of historical data, Acta Vulcanol., 3, 173-187.
Belien, I. B., K. V. Cashman, and, A. W. Rempel, (2010), Gas accumulation in particle-rich suspensions and implications for bubble populations in crystal-rich magma, Earth Planet. Sci. Lett., 297 (1), 133-140.
Bertagnini, A., N. Métrich, P. Landi, and, M. Rosi, (2003), Stromboli Volcano (Aeolian Archipelago, Italy): An open window on the deep-feeding system of a steady state basaltic volcano, J. Geophys. Res., 108 (B7), 2336, doi: 10.1029/2002JB002146.
Blackburn, E. A., L. Wilson, and, R. J. Sparks, (1976), Mechanisms and dynamics of Strombolian activity, J. Geol. Soc., 132 (4), 429-440.
Braun, T., J. Neuberg, and, M. Ripepe, (1996), On the origin of the long-period tremor recorded at Stromboli Volcano (Italy), Ann. Geophys., 39, 311-326.
Burton, M. R., H. M. Mader, and, M. Polacci, (2007a), The role of gas percolation in quiescent degassing of persistently active basaltic volcanoes, Earth Planet. Sci. Lett., 264 (1), 46-60.
Burton, M. R., P. Allard, F. Muré, and, A. La Spina, (2007b), Magmatic gas composition reveals the source depth of slug-driven Strombolian explosive activity, Science, 317 (5835), 227-230.
Casagli, N., A. Tibaldi, A. Merri, C. Del Ventisette, T. Apuani, L. Guerri, J. Fortuny-Guasch, and, D. Tarchi, (2009), Deformation of Stromboli Volcano (Italy) during the 2007 eruption revealed by radar interferometry, numerical modelling and structural geological field data, J. Volcanol. Geotherm. Res., 182 (3), 182-200.
Chaussard, E., F. Amelung, and, Y. Aoki, (2013), Characterization of open and closed volcanic systems in Indonesia and Mexico using InSAR time series, J. Geophys. Res. Solid Earth, 118, 3957-3969, doi: 10.1002/jgrb.50288.
Chouet, B., G. Saccorotti, M. Martini, P. Dawson, G. De Luca, G. Milana, and, R. Scarpa, (1997), Source and path effects in the wave fields of tremor and explosions at Stromboli Volcano, Italy, J. Geophys. Res., 102 (B7), 15,129-15,150, doi: 10.1029/97JB00953.
Chouet, B., P. Dawson, T. Ohminato, M. Martini, G. Saccorotti, F. Giudicepietro, G. De Luca, G. Milana, and, R. Scarpa, (2003), Source mechanisms of explosions at Stromboli Volcano, Italy, determined from moment-tensor inversions of very-long-period data, J. Geophys. Res., 108 (B1), 2019, doi: 10.1029/2002JB001919.
Colõ, L., M. Ripepe, D. R. Baker, and, M. Polacci, (2010), Magma vesiculation and infrasonic activity at Stromboli open conduit volcano, Earth Planet. Sci. Lett., 292 (3), 274-280.
Del Bello, E., E. W. Llewellin, J. Taddeucci, P. Scarlato, and, S. J. Lane, (2012), An analytical model for gas overpressure in slug-driven explosions: Insights into Strombolian volcanic eruptions, J. Geophys. Res., 117, B02206, doi: 10.1029/2011JB008747.
Di Traglia, F., C. Ventisette, M. Rosi, F. Mugnai, E. Intrieri, S. Moretti, and, N. Casagli, (2013), Ground-based InSAR reveals conduit pressurization pulses at Stromboli Volcano, Terra Nova, 25 (3), 192-198.
Di Traglia, F., et al. (2014), The Ground-Based InSAR monitoring system at Stromboli Volcano: Linking changes in displacement rate and intensity of persistent volcanic activity, Bull. Volcanol., 76 (2), 1-18.
Earle, P. S., and, P. M. Shearer, (1994), Characterization of global seismograms using an automatic-picking algorithm, Bull. Seismol. Soc. Am., 84 (2), 366-376.
Ghiglia, D. C., and, L. A. Romero, (1994), Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods, J. Opt. Soc. Am. A Opt. Image Sci., 11 (1), 107-117.
Harris, A., and, M. Ripepe, (2007), Synergy of multiple geophysical approaches to unravel explosive eruption conduit and source dynamics-A case study from Stromboli, Chem. Erde, 67 (1), 1-35.
Intrieri, E., F. Di Traglia, C. Del Ventisette, G. Gigli, F. Mugnai, G. Luzi, and, N. Casagli, (2013), Flank instability of Stromboli volcano (Aeolian Islands, Southern Italy): Integration of GB-InSAR and geomorphological observations, Geomorphology, 201, 60-69.
James, M. R., S. J. Lane, and, B. A. Chouet, (2006), Gas slug ascent through changes in conduit diameter: Laboratory insights into a volcano-seismic source process in low-viscosity magmas, J. Geophys. Res., 111, B05201, doi: 10.1029/2005JB003718.
James, M. R., S. J. Lane, and, S. B. Corder, (2008), Modelling the rapid near-surface expansion of gas slugs in low-viscosity magmas, Geol. Soc. London Spec. Publ., 307 (1), 147-167.
Kanasewich, E. R., (1981), Time Sequence Analysis in Geophysics, pp. 1-532, Univ. of Alberta Press, Edmonton, Alberta, Canada.
Lautze, N. C., and, B. F. Houghton, (2005), Physical mingling of magma and complex eruption dynamics in the shallow conduit at Stromboli Volcano, Italy, Geology, 33 (5), 425-428.
Longo, A., D. Barbato, P. Papale, G. Saccorotti, and, M. Barsanti, (2008), Numerical simulation of the dynamics of fluid oscillations in a gravitationally unstable, compositionally stratified fissure, Geol. Soc. London, Spec. Publ., 307 (1), 33-44.
Martini, F., C. J. Bean, G. Saccorotti, F. Viveiros, and, N. Wallenstein, (2009), Seasonal cycles of seismic velocity variations detected using coda wave interferometry at Fogo Volcano, Sao Miguel, Azores, during 2003-2004, J. Volcanol. Geotherm. Res., 181 (3), 231-246.
Nolesini, T., F. Di Traglia, C. Del Ventisette, S. Moretti, and, N. Casagli, (2013), Deformations and slope instability on Stromboli Volcano: Integration of GBInSAR data and analogue modeling, Geomorphology, 180-181, 242-254.
Parfitt, E. A., (2004), A discussion of the mechanisms of explosive basaltic eruptions, J. Volcanol. Geotherm. Res., 134 (1), 77-107.
Ripepe, M., and, E. Gordeev, (1999), Gas bubble dynamics model for shallow volcanic tremor at Stromboli, J. Geophys. Res., 104 (B5), 10,639-10,654.
Rivalta, E., K. Pascal, J. Phillips, and, A. Bonaccorso, (2013), Explosive expansion of a slowly decompressed magma: Evidence for delayed bubble nucleation, Geochem. Geophys. Geosyst., 14, 3067-3084, doi: 10.1002/ggge.20183.
Rosi, M., M. Pistolesi, A. Bertagnini, P. Landi, M. Pompilio, and, A. Di Roberto, (2013), Stromboli Volcano, Aeolian Islands (Italy): Present eruptive activity and hazards, Geol. Soc. London Mem., 37 (1), 473-490.
Saccorotti, G., B. A. Chouet, M. Martini, and, R. Scarpa, (1998), Bayesian statistics applied to the location of the source of explosions at Stromboli Volcano, Italy, Bull. Seismol. Soc. Am., 88, 1099-1111.
Saccorotti, G., and, E. Del Pezzo, (2000), A probabilistic approach to the inversion of data from a seismic array and its application to volcanic signals, Geophys. J. Int., 143 (1), 249-261.
Taddeucci, J., D. M. Palladino, G. Sottili, D. Bernini, D. Andronico, and, A. Cristaldi, (2013), Linked frequency and intensity of persistent volcanic activity at Stromboli (Italy), Geophys. Res. Lett., 40, 3384-3388, doi: 10.1002/grl.50652.
Witham, F., (2011), Conduit convection, magma mixing, and melt inclusion trends at persistently degassing volcanoes, Earth Planet. Sci. Lett., 301 (1), 345-352.