[en] Formic (HCOOH) and acetic acid (CH3COOH) are the most abundant carboxylic acids in the Earth’s atmosphere and key compounds to aqueous-phase chemistry. Here we present the first distributions of CH3COOH retrieved from the 2007–2018 satellite observations of the nadir-looking Infrared Atmospheric Sounding Interferometer (IASI), using a neural network-based retrieval approach. A joint analysis with the IASI HCOOH product reveals that the two species exhibit similar distributions, seasonality and atmospheric burden, pointing to major common sources. We show that their abundance is highly correlated to isoprene and monoterpenes emissions, as well as to biomass burning. Over Africa, evidence is provided that residual smoldering combustion might be a major driver of the HCOOH and CH3COOH seasonality. Earlier seasonal enhancement of HCOOH at Northern Hemisphere middle and high latitudes, and late seasonal secondary peaks of CH3COOH in the tropics, suggest that sources and production pathways specific to each species are also at play.
Research Center/Unit :
Sphères - SPHERES
Disciplines :
Earth sciences & physical geography
Author, co-author :
Franco, B
Clarisse, L
Stavrakou, T
Müller, J-F
Taraborrelli, D
Hadji-Lazaro, J
Hannigan, JW
Hase, F
Hurtmans, D
Jones, N
Lutsch, E
Mahieu, Emmanuel ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Groupe infra-rouge de phys. atmosph. et solaire (GIRPAS)
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Aires, F., Rossow, W. B., Scott, N. A., & Chédin, A. (2002). Remote sensing from the infrared atmospheric sounding interferometer instrument 2. Simultaneous retrieval of temperature, water vapor, and ozone atmospheric profiles. Journal of Geophysical Research, 107(D22), 4620. hppts://doi.org/10.1029/2001jd001591
Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., Crounse, J. D., & Wennberg, P. O. (2011). Emission factors for open and domestic biomass burning for use in atmospheric models. Atmospheric Chemistry and Physics, 11(9), 4039–4072. hppts://doi.org/10.5194/acp-11-4039-2011
Andreae, M. O. (2019). Emission of trace gases and aerosols from biomass burning—An updated assessment. Atmospheric Chemistry and Physics Discussions, 19, 8523–8546. hppts://doi.org/10.5194/acp-2019-303
Andrews, D. U., Heazlewood, B. R., Maccarone, A. T., Conroy, T., Payne, R. J., Jordan, M. J. T., & Kable, S. H. (2012). Photo-tautomerization of acetaldehyde to vinyl alcohol: A potential route to tropospheric acids. Science, 337(6099), 1203–1206. hppts://doi.org/10.1126/science.1220712
Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., Troe, J., & Subcommittee, I. (2006). Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II—Gas phase reactions of organic species. Atmospheric Chemistry and Physics, 6(11), 3625–4055. hppts://doi.org/10.5194/acp-6-3625-2006
Bauwens, M., Stavrakou, T., Müller, J.-F., Schaeybroeck, B. V., Cruz, L. D., DeTroch, R., Giot, O., Hamdi, R., Termonia, P., Laffineur, Q., Amelynck, C., Schoon, N., Heinesch, B., Holst, T., Arneth, A., Ceulemans, R., Sanchez-Lorenzo, A., & Guenther, A. (2018). Recent past (1979–2014) and future (2070–2099) isoprene fluxes over Europe simulated with the MEGAN–MOHYCAN model. Biogeosciences, 15(12), 3673–3690. hppts://doi.org/10.5194/bg-15-3673-2018
Calvert, J. G., & Stockwell, W. R. (1983). Acid generation in the troposphere by gas-phase chemistry. Environmental Science & Technology, 17(9), 428A–443A. hppts://doi.org/10.1021/es00115a727
Chaliyakunnel, S., Millet, D. B., Wells, K. C., Cady-Pereira, K. E., & Shephard, M. W. (2016). A large underestimate of formic acid from tropical fires: Constraints from space-borne measurements. Environmental Science & Technology, 50(11), 5631–5640. hppts://doi.org/10.1021/acs.est.5b06385
Chameides, W. L., & Davis, D. D. (1983). Aqueous-phase source of formic acid in clouds. Nature, 304(5925), 427–429. hppts://doi.org/10.1038/304427a0
Chebbi, A., & Carlier, P. (1996). Carboxylic acids in the troposphere, occurrence, sources, and sinks: A review. Atmospheric Environment, 30(24), 4233–4249. hppts://doi.org/10.1016/1352-2310(96)00102-1
Clarisse, L., Clerbaux, C., Franco, B., Hadji-Lazaro, J., Whitburn, S., Kopp, A. K., Hurtmans, D., & Coheur, P.-F. (2019). A decadal data set of global atmospheric dust retrieved from IASI satellite measurements. Journal of Geophysical Research: Atmospheres, 124, 1618–1647. hppts://doi.org/10.1029/2018jd029701
Clarisse, L., Coheur, P.-F., Prata, F., Hadji-Lazaro, J., Hurtmans, D., & Clerbaux, C. (2013). A unified approach to infrared aerosol remote sensing and type specification. Atmospheric Chemistry and Physics, 13(4), 2195–2221. hppts://doi.org/10.5194/acp-13-2195-2013
Clarisse, L., R'Honi, Y., Coheur, P.-F., Hurtmans, D., & Clerbaux, C. (2011). Thermal infrared nadir observations of 24 atmospheric gases. Geophysical Research Letters, 38, L10802. hppts://doi.org/10.1029/2011GL047271
Clerbaux, C., Boynard, A., Clarisse, L., George, M., Hadji-Lazaro, J., Herbin, H., Hurtmans, D., Pommier, M., Razavi, A., Turquety, S., Wespes, C., & Coheur, P.-F. (2009). Monitoring of atmospheric composition using the thermal infrared IASI/Metop sounder. Atmospheric Chemistry and Physics, 9(16), 6041–6054. hppts://doi.org/10.5194/acp-9-6041-2009
Coheur, P.-F., Clarisse, L., Turquety, S., Hurtmans, D., & Clerbaux, C. (2009). IASI measurements of reactive trace species in biomass burning plumes. Atmospheric Chemistry and Physics, 9(15), 5655–5667. hppts://doi.org/10.5194/acp-9-5655-2009
Di Noia, A., Hasekamp, O. P., van Harten, G., Rietjens, J. H. H., Smit, J. M., Snik, F., Henzing, J. S., de Boer, J., Keller, C. U., & Volten, H. (2015). Use of neural networks in ground-based aerosol retrievals from multi-angle spectropolarimetric observations. Atmospheric Measurement Techniques, 8(1), 281–299. hppts://doi.org/10.5194/amt-8-281-2015
Dillon, T. J., & Crowley, J. N. (2008). Direct detection of OH formation in the reactions of HO2 with CH3C(O)O2 and other substituted peroxy radicals. Atmospheric Chemistry and Physics, 8(16), 4877–4889. hppts://doi.org/10.5194/acp-8-4877-2008
Franco, B., Clarisse, L., Stavrakou, T., Müller, J.-F., Pozzer, A., Hadji-Lazaro, J., Hurtmans, D., Clerbaux, C., & Coheur, P.-F. (2019). Acetone atmospheric distribution retrieved from space. Geophysical Research Letters, 46, 2884–2893. hppts://doi.org/10.1029/2019GL082052
Franco, B., Clarisse, L., Stavrakou, T., Müller, J.-F., Van Damme, M., Whitburn, S., Hadji-Lazaro, J., Hurtmans, D., Taraborrelli, D., Clerbaux, C., & Coheur, P.-F. (2018). A general framework for global retrievals of trace gases from IASI: Application to methanol, formic acid, and PAN. Journal of Geophysical Research: Atmospheres, 123, 13,963–13,984. hppts://doi.org/10.1029/2018JD029633
Galloway, J. N., Likens, G. E., Keene, W. C., & Miller, J. M. (1982). The composition of precipitation in remote areas of the world. Journal of Geophysical Research, 87(C11), 8771. hppts://doi.org/10.1029/jc087ic11p08771
Giglio, L., van der Werf, G. R., Randerson, J. T., Collatz, G. J., & Kasibhatla, P. (2006). Global estimation of burned area using MODIS active fire observations. Atmospheric Chemistry and Physics, 6(4), 957–974. hppts://doi.org/10.5194/acp-6-957-2006
Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., & Wang, X. (2012). The model of emissions of gases and aerosols from nature version 2.1 (MEGAN2.1): An extended and updated framework for modeling biogenic emissions. Geoscientific Model Development, 5(6), 1471–1492. hppts://doi.org/10.5194/gmd-5-1471-2012
Hasson, A. S., Tyndall, G. S., & Orlando, J. J. (2004). A product yield study of the reaction of HO2 radicals with ethyl peroxy (C2H5O2), acetyl peroxy (CH3C(O)O2), and acetonyl peroxy (CH3C(O)CH2O2) radicals. The Journal of Physical Chemistry A, 108(28), 5979–5989. hppts://doi.org/10.1021/jp048873t
Hatakeyama, S., Washida, N., & Akimoto, H. (1986). Rate constants and mechanisms for the reaction of hydroxyl (OD) radicals with acetylene, propyne, and 2-butyne in air at 297.+-. 2 K. The Journal of Physical Chemistry, 90(1), 173–178. hppts://doi.org/10.1021/j100273a039
Huang, Y., Dransfield, T. J., Miller, J. D., Rojas, R. D., Castillo, X. G., & Anderson, J. G. (2009). Experimental study of the kinetics of the reaction of acetic acid with hydroxyl radicals from 255 to 355 K. The Journal of Physical Chemistry A, 113(2), 423–430. hppts://doi.org/10.1021/jp808627w
Ito, A., Sillman, S., & Penner, J. E. (2007). Effects of additional nonmethane volatile organic compounds, organic nitrates, and direct emissions of oxygenated organic species on global tropospheric chemistry. Journal of Geophysical Research, 112, D06309. hppts://doi.org/10.1029/2005JD006556
Jacob, D. J. (1986). Chemistry of OH in remote clouds and its role in the production of formic acid and peroxymonosulfate. Journal of Geophysical Research, 91(D9), 9807. hppts://doi.org/10.1029/jd091id09p09807
Kawamura, K., Ng, L. L., & Kaplan, I. R. (1985). Determination of organic acids (C1-C10) in the atmosphere, motor exhausts, and engine oils. Environmental Science & Technology, 19(11), 1082–1086. hppts://doi.org/10.1021/es00141a010
Keene, W. C., & Galloway, J. N. (1988). The biogeochemical cycling of formic and acetic acids through the troposphere: An overview of current understanding. Tellus B, 40B(5), 322–334. hppts://doi.org/10.1111/j.1600-0889.1988.tb00106.x
Keene, W. C., Galloway, J. N., Likens, G. E., Deviney, F. A., Mikkelsen, K. N., Moody, J. L., & Maben, J. R. (2015). Atmospheric wet deposition in remote regions: Benchmarks for environmental change. Journal of the Atmospheric Sciences, 72(8), 2947–2978. hppts://doi.org/10.1175/jas-d-14-0378.1
Khan, M. A. H., Lyons, K., Chhantyal-Pun, R., McGillen, M. R., Caravan, R. L., Taatjes, C. A., Orr-Ewing, A. J., Percival, C. J., & Shallcross, D. E. (2018). Investigating the tropospheric chemistry of acetic acid using the global 3-D chemistry transport model, STOCHEM-CRI. Journal of Geophysical Research: Atmospheres, 123, 6267–6281. hppts://doi.org/10.1029/2018JD028529
Khare, P., Kumar, N., Kumari, K. M., & Srivastava, S. S. (1999). Atmospheric formic and acetic acids: An overview. Reviews of Geophysics, 37(2), 227–248. hppts://doi.org/10.1029/1998RG900005
Krasnopolsky, V. M., Fox-Rabinovitz, M. S., & Chalikov, D. V. (2005). New approach to calculation of atmospheric model physics: Accurate and fast neural network emulation of longwave radiation in a climate model. Monthly Weather Review, 133(5), 1370–1383. hppts://doi.org/10.1175/mwr2923.1
Lei, X., Chen, D., Wang, W., Liu, F., & Wang, W. (2018). Quantum chemical studies of the OH-initiated oxidation reactions of propenols in the presence of O2. Molecular Physics, 117(6), 682–692. hppts://doi.org/10.1080/00268976.2018.1537527
Liggio, J., Moussa, S. G., Wentzell, J., Darlington, A., Liu, P., Leithead, A., Hayden, K., O'Brien, J., Mittermeier, R. L., Staebler, R., Wolde, M., & Li, S.-M. (2017). Understanding the primary emissions and secondary formation of gaseous organic acids in the oil sands region of Alberta, Canada. Atmospheric Chemistry and Physics, 17(13), 8411–8427. hppts://doi.org/10.5194/acp-17-8411-2017
Liu, Z., Nguyen, V. S., Harvey, J., Müller, J.-F., & Peeters, J. (2018). The photolysis of α-hydroperoxycarbonyls. Physical Chemistry Chemical Physics, 20(10), 6970–6979. hppts://doi.org/10.1039/c7cp08421h
Millet, D. B., Baasandorj, M., Farmer, D. K., Thornton, J. A., Baumann, K., Brophy, P., Chaliyakunnel, S., de Gouw, J. A., Graus, M., Hu, L., Koss, A., Lee, B. H., Lopez-Hilfiker, F. D., Neuman, J. A., Paulot, F., Peischl, J., Pollack, I. B., Ryerson, T. B., Warneke, C., Williams, B. J., & Xu, J. (2015). A large and ubiquitous source of atmospheric formic acid. Atmospheric Chemistry and Physics, 15(11), 6283–6304. hppts://doi.org/10.5194/acp-15-6283-2015
Moortgat, G., Veyret, B., & Lesclaux, R. (1989). Absorption spectrum and kinetics of reactions of the acetylperoxy radical. The Journal of Physical Chemistry, 93(6), 2362–2368. hppts://doi.org/10.1021/j100343a032
Müller, M. D., Kaifel, A. K., Weber, M., Tellmann, S., Burrows, J. P., & Loyola, D. (2003). Ozone profile retrieval from global ozone monitoring experiment (GOME) data using a neural network approach (neural network ozone retrieval system (NNORSY)). Journal of Geophysical Research, 108(D16), 4497. hppts://doi.org/10.1029/2002JD002784
Müller, J.-F., Stavrakou, T., & Peeters, J. (2019). Chemistry and deposition in the model of atmospheric composition at global and regional scales using inversion techniques for trace gas emissions (MAGRITTE v1.1) – Part 1: Chemical mechanism. Geoscientific Model Development, 12(6), 2307–2356. hppts://doi.org/10.5194/gmd-12-2307-2019
Müller, J.-F., Stavrakou, T., Wallens, S., Smedt, I. D., Roozendael, M. V., Potosnak, M. J., Blake, D. R., & Guenther, A. B. (2008). Global isoprene emissions estimated using MEGAN, ECMWF analyses and a detailed canopy environment model. Atmospheric Chemistry and Physics, 8(5), 1329–1341. hppts://doi.org/10.5194/acp-8-1329-2008
Mungall, E. L., Abbatt, J. P. D., Wentzell, J. J. B., Wentworth, G. R., Murphy, J. G., Kunkel, D., Gute, E, Tarasick, D. W., Sharma, S., Cox, C. J., Uttal, T., & Liggio, J. (2018). High gas-phase mixing ratios of formic and acetic acid in the High Arctic. Atmospheric Chemistry and Physics, 18(14), 10,237–10,254. hppts://doi.org/10.5194/acp-18-10237-2018
Neeb, P., Sauer, F., Horie, O., & Moortgat, G. K. (1997). Formation of hydroxymethyl hydroperoxide and formic acid in alkene ozonolysis in the presence of water vapour. Atmospheric Environment, 10, 1417–1423. hppts://doi.org/10.1016/s1352-2310(96)00322-6
Paulot, F., Wunch, D., Crounse, J. D., Toon, G. C., Millet, D. B., DeCarlo, P. F., Vigouroux, C., Deutscher, N. M., González Abad, G., Notholt, J., Warneke, T., Hannigan, J. W., Warneke, C., de Gouw, J. A., Dunlea, E. J., De Maziére, M., Griffith, D. W. T., Bernath, P., Jimenez, J. L., & Wennberg, P. O.(2011). Importance of secondary sources in the atmospheric budgets of formic and acetic acids. Atmospheric Chemistry and Physics, 11(5), 1989–2013. hppts://doi.org/10.5194/acp-11-1989-2011
Piscini, A., Carboni, E., Frate, F. D., & Grainger, R. G. (2014). Simultaneous retrieval of volcanic sulphur dioxide and plume height from hyperspectral data using artificial neural networks. Geophysical Journal International, 198(2), 697–709. hppts://doi.org/10.1093/gji/ggu152
Pommier, M., Clerbaux, C., & Coheur, P.-F. (2017). Determination of enhancement ratios of HCOOH relative to CO in biomass burning plumes by the infrared atmospheric sounding interferometer (IASI). Atmospheric Chemistry and Physics, 17(18), 11,089–11,105. hppts://doi.org/10.5194/acp-17-11089-2017
Pommier, M., Clerbaux, C., Coheur, P.-F., Mahieu, E., Müller, J.-F., Paton-Walsh, C., Stavrakou, T., & Vigouroux, C. (2016). HCOOH distributions from IASI for 2008–2014: Comparison with ground-based FTIR measurements and a global chemistry-transport model. Atmospheric Chemistry and Physics, 16(14), 8963–8981. hppts://doi.org/10.5194/acp-16-8963-2016
Razavi, A., Karagulian, F., Clarisse, L., Hurtmans, D., Coheur, P. F., Clerbaux, C., Müller, J. F., & Stavrakou, T. (2011). Global distributions of methanol and formic acid retrieved for the first time from the IASI/MetOp thermal infrared sounder. Atmospheric Chemistry and Physics, 11(2), 857–872. hppts://doi.org/10.5194/acp-11-857-2011
So, S., Wille, U., & da Silva, G. (2014). Atmospheric chemistry of enols: A theoretical study of the vinyl alcohol + OH + O2 reaction mechanism. Environmental Science & Technology, 48(12), 6694–6701. hppts://doi.org/10.1021/es500319q
Stavrakou, T., Müller, J.-F., Peeters, J., Razavi, A., Clarisse, L., Clerbaux, C., Coheur, P.-F., Hurtmans, D., De Mazière, M., Vigouroux, C., Deutscher, N. M., Griffith, D. W. T., Jones, N., & Paton-Walsh, C. (2012). Satellite evidence for a large source of formic acid from boreal and tropical forests. Nature Geoscience, 5(1), 26–30. hppts://doi.org/10.1038/ngeo1354
Van Damme, M., Whitburn, S., Clarisse, L., Clerbaux, C., Hurtmans, D., & Coheur, P.-F. (2017). Version 2 of the IASI NH3 neural network retrieval algorithm: Near-real-time and reanalysed datasets. Atmospheric Measurement Techniques, 10(12), 4905–4914. hppts://doi.org/10.5194/amt-10-4905-2017
van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Kasibhatla, P. S., & Arellano, A. F.(2006). Interannual variability in global biomass burning emissions from 1997 to 2004. Atmospheric Chemistry and Physics, 6(11), 3423–3441. hppts://doi.org/10.5194/acp-6-3423-2006
Vet, R., Artz, R. S., Carou, S., Shaw, M., Ro, C.-U., Aas, W., Baker, A., Bowersox, V. C., Dentener, F., Galy-Lacaux, C., Hou, A., Pienaar, J. J., Gillett, R., Forti, M. C., Gromov, S., Hara, H., Khodzher, T., Mahowald, N. M., Nickovic, S., Rao, P. S. P., & Reid, N. W. (2014). A global assessment of precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base cations, organic acids, acidity and pH, and phosphorus. Atmospheric Environment, 93, 3–100. hppts://doi.org/10.1016/j.atmosenv.2013.10.060
von Kuhlmann, R., Lawrence, M. G., Crutzen, P. J., & Rasch, P. J. (2003). A model for studies of tropospheric ozone and nonmethane hydrocarbons: Model evaluation of ozone-related species. Journal of Geophysical Research, 108(D23), 4729. hppts://doi.org/10.1029/2002jd003348
Walker, J. C., Dudhia, A., & Carboni, E. (2011). An effective method for the detection of trace species demonstrated using the Metop infrared atmospheric sounding interferometer. Atmospheric Measurement Techniques, 4(8), 1567–1580. hppts://doi.org/10.5194/amt-4-1567-2011
Whitburn, S., Van Damme, M., Clarisse, L., Bauduin, S., Heald, C. L., Hadji-Lazaro, J., Hurtmans, D., Zondlo, M. A., Clerbaux, C., & Coheur, P.-F. (2016). A flexible and robust neural network IASI-NH 3 retrieval algorithm. Journal of Geophysical Research: Atmospheres, 121, 6581–6599. hppts://doi.org/10.1002/2016jd024828
Whitburn, S., Van Damme, M., Kaiser, J. W., van der Werf, G. R., Turquety, S., Hurtmans, D., Clarisse, L., Clerbaux, C., & Coheur, P.-F. (2015). Ammonia emissions in tropical biomass burning regions: Comparison between satellite-derived emissions and bottom-up fire inventories. Atmospheric Environment, 121, 42–54. hppts://doi.org/10.1016/j.atmosenv.2015.03.015
Yu, S. (2000). Role of organic acids (formic, acetic, pyruvic and oxalic) in the formation of cloud condensation nuclei (CCN): A review. Atmospheric Research, 53(4), 185–217. hppts://doi.org/10.1016/s0169-8095(00)00037-5
Zheng, B., Chevallier, F., Ciais, P., Yin, Y., & Wang, Y. (2018). On the role of the flaming to smoldering transition in the seasonal cycle of African fire emissions. Geophysical Research Letters, 45, 11,998–12,007. hppts://doi.org/10.1029/2018gl079092
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.