[en] The thymus is the main organ of the lymphatic system, in which T cells undergo a rigorous selection to ensure that their receptors (TCRs) will be functional and will not react against the self. Genes encoding for TCR chains are fragmented and must be rearranged by a process of somatic recombination generating TCR rearrangement excision circles (TRECs). We recently documented coxsackievirus B4 (CV-B4) infection of Swiss albino mouse thymus in the course of in utero transmission. In the current study, we intended to evaluate thymic output in this experimental model. For this purpose, pregnant Swiss albino mice were inoculated with CV-B4 at day 10 or 17 of gestation, and thymus and spleen were sampled from offspring at different time points and then subjected to quantification of TREC molecules and Ptk7 gene expression. Results showed a pronounced effect of in utero CV-B4 infection on the thymus with an increase in the cellularity and, consequently, the weight of the organ. sj and DβTREC analysis, by real-time PCR, revealed a significant decrease following CV-B4 infection compared to controls, a decrease which gets worse as time goes by, both in the thymus and in the periphery. Those observations reflect a disturbance in the export of T cells to the periphery and their accumulation within the thymus. The evaluation of Ptk7 transcripts in the thymus, for its part, showed a decrease in expression, especially following an infection at day 10 of gestation, which supports the hypothesis of T cell accumulation in a mature stage in the thymus. The various effects observed correlate either negatively or positively with the viral load in the thymus and spleen. Disruption in thymic export may indeed interfere with T cell maturation. We speculate that this may lead to a premature release of T cells and the possibility of circulating autoreactive or proliferation-impaired T cell clones.
Research Center/Unit :
GIGA-I3 - Giga-Infection, Immunity and Inflammation - ULiège
Renard, Chantal; Université de Liège - ULiège > GIGA-I3
Martens, Henri ; Université de Liège - ULiège > GIGA I3 - Immunoendocrinology
Aouni, Mahjoub; Université de Monastir > Faculté de Pharmacie
Hober, Didier; Université de Lille 2 et CHRU > Laboratoire de Virologie
Geenen, Vincent ; Université de Liège - ULiège > Centre d'immunologie
Jaïdane, Hela; Université de Monastir > Faculté de Pharmacie
Language :
English
Title :
Assessment of thymic output dynamics after in utero infection of mice with coxsakievirus B4
Publication date :
02 April 2020
Journal title :
Frontiers in Immunology
eISSN :
1664-3224
Publisher :
Frontiers Research Foundation, Lausanne, Switzerland
Volume :
11
Pages :
481
Peer reviewed :
Peer Reviewed verified by ORBi
Name of the research project :
Thymus and type 1 diabetes
Funders :
MHESR - Ministère de l'Enseignement Supérieur et de la Recherche Scientifique ULiège - University of Liège
Funding text :
This work was supported by the Ministère de L’enseignement Supérieur et de la Recherche Scientifique, LR99ES27, Tunisia, and GIGA-I3 Research–Center of Immunoendocrinology, University of Liege, Belgium. AH received a mobility grant provided by the Ministère de l’Enseignement Supérieur et de la RechercheScientifique, Tunisia, also an Erasmus+ scholarship from
University of Liege.
Blackburn CC, Manley NR. Developing a new paradigm for thymus organogenesis. Nat Rev Immunol. (2004) 4:278. 10.1038/nri133115057786
Zhang SL, Bhandoola A. Trafficking to the thymus. In: Thymic Development and Selection of T Lymphocytes. Berlin, Heidelberg: Springer (2013). p. 87–111.23624945
Krangel MS. Mechanics of T cell receptor gene rearrangement. Curr Opin Immunol. (2009) 21:133–9. 10.1016/j.coi.2009.03.00919362456
Ye P, Kirschner DE. Reevaluation of T cell receptor excision circles as a measure of human recent thymic emigrants. J Immunol. (2002) 168:4968–79. 10.4049/jimmunol.168.10.496811994448
Dion ML, Sékaly RP, Cheynier R. Estimating thymic function through quantification of T-cell receptor excision circles. In: Immunological Tolerance. Totowa: Humana Press (2007). p. 197–213.17876095
Ferrando-Martínez S, Franco JM, Ruiz-Mateos E, Hernández A, Ordonez A, Gutierrez E, et al. A reliable and simplified sj/β-TREC ratio quantification method for human thymic output measurement. J Immunol Methods. (2010) 352:111–7. 10.1016/j.jim.2009.11.00719919841
Hazenberg MD, Verschuren MC, Hamann D, Miedema F, Dongen JJ. T cell receptor excision circles as markers for recent thymic emigrants: basic aspects, technical approach, and guidelines for interpretation. J Mol Med. (2001) 79:631–40. 10.1007/s00109010027111715066
Haines CJ, Giffon TD, Lu LS, Lu X, Tessier-Lavigne M, Ross DT, et al. Human CD4+ T cell recent thymic emigrants are identified by protein tyrosine kinase 7 and have reduced immune function. J Exp Med. (2009) 206:275–85. 10.1084/jem.2008099619171767
Jiang G, Zhang M, Yue B, Yang M, Carter C, Al-Quran SZ, et al. PTK7: a new biomarker for immunophenotypic characterization of maturing T cells and T cell acute lymphoblastic leukemia. Leukemia Res. (2012) 36:1347–53. 10.1016/j.leukres.2012.07.00422898210
Lhoumeau AC, Arcangeli ML, De Grandis M, Giordano M, Orsoni JC, Lembo F, et al. Ptk7-deficient mice have decreased hematopoietic stem cell pools as a result of deregulated proliferation and migration. J Immunol. (2016) 196:4367–77. 10.4049/jimmunol.150068027183644
Goronzy JJ, Weyand CM. Thymic function and peripheral T-cell homeostasis in rheumatoid arthritis. Trends Immunol. (2001) 22:251–5. 10.1016/S1471-4906(00)01841-X11323282
Horvath D, Kayser C, Silva CA, Terreri MT, Hilário MO, Andrade LE. Decreased recent thymus emigrantnumber in rheumatoid factor-negative polyarticular juvenile idiopathic arthritis. Clin Exp Rheumatol. (2010) 28:348–53.20460033
Koetz K, Bryl E, Spickschen K, O'Fallon WM, Goronzy JJ, Weyand CM. T cell homeostasis in patients with rheumatoid arthritis. Proc Natl Acad Sci USA. (2000) 97:9203–8. 10.1073/pnas.97.16.920310922071
Hug A, Korporal M, Schröder I, Haas J, Glatz K, Storch-Hagenlocher B, et al. Thymic export function and T cell homeostasis in patients with relapsing remitting multiple sclerosis. J Immunol. (2003) 171:432–7. 10.4049/jimmunol.171.1.43212817027
Thewissen M, Somers V, Venken K, Linsen L, van Paassen P, Geusens P, et al. Analyses of immunosenescent markers in patients with autoimmune disease. Clin Immunol. (2007) 123:209–18. 10.1016/j.clim.2007.01.00517317320
Kayser C, Alberto FL, Da Silva NP, Andrade LE. Decreased number of T cells bearing TCR rearrangement excision circles (TREC) in active recent onset systemic lupus erythematosus. Lupus. (2004) 13:906–11. 10.1191/0961203304lu2031oa15645744
Vieira QF, Kayser C, Kallas EG, Andrade LEC. Decreased recent thymus emigrant number is associated with disease activity in systemic lupus erythematosus. J Rheumatol. (2008) 35:1762–7.18634155
Sempowski G, Thomasch J, Gooding M, Hale L, Edwards L, Ciafaloni E, et al. Effect ofthymectomy on human peripheral blood T cell pools in myasthenia gravis. J Immunol. (2001) 166:2808–17. 10.4049/jimmunol.166.4.2808
Steinmann GG, Klaus B, Muller-Hermelink HK. The involutionof the ageing human thymic epithelium is independent of puberty: a morphometricstudy. Scand J Immunol. (1985) 22:563. 10.1111/j.1365-3083.1985.tb01916.x4081647
Tracy S, Chapman NM, Mahy BW, (eds.). The Coxsackie B Viruses. Vol. 223. Berlin; Heidelberg: Springer Science & Business Media (2013).
Jaïdane H, Halouani A, Jmii H, Elmastour F, Abdelkefi S, Bodart et al. In-utero coxsackievirus B4 infection of the mouse thymus. Clin Exp Immunol. (2016) 187:399–407. 10.1111/cei.1289327790717
Jaïdane H, Gharbi J, Lobert PE, Caloone D, Lucas B, Sané F, et al. Infection of primary cultures of murine splenic and thymic cells with coxsackievirus B4. Microbiol Immunol. (2008) 52:40–6. 10.1111/j.1348-0421.2008.00002.x18352912
Brilot F, Chehadeh W, Charlet-Renard C, Martens H, Geenen V, Hober D. Persistent infection of human thymic epithelial cells by Coxsackievirus B4. J Virol. (2002) 76:5260–5. 10.1128/JVI.76.10.5260-5265.200211967339
Jaïdane H, Caloone D, Lobert P E, Sané F, Dardenne O, Naquet P, et al. Persistent infection of thymic epithelial cells with Coxsackievirus B4 results indecreased expression of type 2 insulin-like growth factor. J Virol. (2012) 86:11151–62. 10.1128/JVI.00726-1222855493
Brilot F, Geenen V, Hober D, Stoddart C. Coxsackievirus B4 infection of human fetal thymus cells. J Virol. (2004) 78:9854–61. 10.1128/JVI.78.18.9854-9861.200415331720
Brilot F, Jaïdane H, Geenen V, Hober D. Coxsackievirus B4 infection of murine fetal thymus organ cultures. J Med Virol. (2008) 80:659–66. 10.1002/jmv.21016
Jaïdane H, Gharbi J, Lobert PE, Lucas B, Hiar R, M'Hadheb MB, et al. Prolonged viral RNA detection in blood and lymphoid tissues from Coxsackievirus B4- E2 orally-inoculated mice. Microbiol Immunol. (2006) 50:971–4. 10.1111/j.1348-0421.2006.tb03874.x17179665
Chatterjee NK, Hou J, Dockstader P, Charbonneau T. Coxsackievirus B4 infection alters thymic, splenic, and peripheral lymphocyte repertoire preceding onset of hyperglycemia in mice. J Med Virol. (1992) 38:124–31. 10.1002/jmv.18903802101334127
Reed LJ, Muench H. A simple method of estimating fifty per cent endpoints. Am J Epidemiol. (1938) 27:493–7. 10.1093/oxfordjournals.aje.a118408
Dulude G, Cheynier R, Gauchat D, Abdallah A, Kettaf N, Sékaly RP, et al. The magnitude of thymic output is genetically determined through controlled intrathymic precursor T cell proliferation. J Immunol. (2008) 181:7818–24. 10.4049/jimmunol.181.11.781819017971
Chomczynski P, Sacchi N. Single-step method of RNA isolation by acidguanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. (1987) 162:156–9. 10.1016/0003-2697(87)90021-22440339
Dotti I, Bonin S. DNase treatment of RNA. Guidelines for Molecular Analysis in Archive Tissues. Berlin, Heidelberg: Springer (2011). p. 87–90.
Jmii H, Halouani A, Elmastour F, Ifie E, Richardson SJ, Sane F, et al. Central nervous system infection following vertical transmission of Coxsackievirus B4 in mice. Pathog Dis. (2016) 74:ftw096. 10.1093/femspd/ftw09627655912
Yoon JW, Austin M, Onodera T, Notkins AL. Virus-induced diabetes mellitus: isolation of a virus from the pancreas of a child with diabetic ketoacidosis. N Engl J Med. (1979) 300:1173–9. 10.1056/NEJM197905243002102
Kibrick S, Benirschke K. Severe generalized disease (encephalohepatomyocarditis) occurring in the newborn period and due to infection with Coxsackie virus, group B: evidence of intrauterine infection with this agent. Pediatrics. (1958) 22:857–75.13600914
Jaïdane H, Halouani A, Jmii H, Elmastour F, Mokni M, Aouni M. Coxsackievirus B4 vertical transmission in a murine model. Virol J. (2017) 14:16. 10.1186/s12985-017-0689-528143615
Westera L. Quantification of Lymphocyte Dynamics (Doctoral dissertation). Netherland: Utrecht University (2014).
Douagi I, Colucci F, Di Santo JP, Cumano A. Identification of the earliest prethymic bipotent T/NK progenitor in murine fetal liver. Blood. (2002) 99:463–71. 10.1182/blood.V99.2.46311781226
Hazenberg MD, Borghans JA, de Boer RJ, Miedema F. Thymic output: a bad TREC record. Nat Immunol. (2003) 4:97. 10.1038/ni0203-9712555089
Elgbratt K, Kurlberg G, Hahn-Zohric M, Hörnquist EH. Rapid migration of thymic emigrants to the colonic mucosa in ulcerative colitis patients. Clin Exp Immunol. (2010) 162:325–36. 10.1111/j.1365-2249.2010.04230.x20840654
Nunes-Alves C, Nobrega C, Behar SM, Correia-Neves M. Tolerance has its limits: how the thymus copes with infection. Trends Immunol. (2013) 34:502–10. 10.1016/j.it.2013.06.00423871487
Douek DC, Betts MR, Hill BJ, Little SJ, Lempicki R, Metcalf JA, et al. Evidence for increased T cell turnover and decreased thymic output in HIV infection. J Immunol. (2001) 167:6663–8. 10.4049/jimmunol.167.11.666311714838
Cianci R, Pinti M, Nasi M, Starnino S, Cammarota G, Miele L, et al. Impairment of recent thymic emigrants in HCV infection. Int J Immunopathol Pharmacol. (2005) 18:723–8. 10.1177/03946320050180041516388721
Clave E, Rocha V, Talvensaari K, Busson M, Douay C, Appert M, et al. Prognostic value of pre-transplantation host thymic function in HLA-identical sibling hematopoietic stem cell transplantation. Blood. (2005) 105:2608–13. 10.1182/blood-2004-04-1667
Vallejo A, Valladares A, Felipe BD, Vivancos J, Gutierrez S, Soriano-Sarabia N. High thymic volume is associated with viral replication and immunologic impairment only early after HAART interruption in chronic HIV infection. Viral Immunol. (2005) 18:740–6. 10.1089/vim.2005.18.74016359240
Meyer-Olson D, Shoukry NH, Brady KW, Kim H, Olson DP, Hartman K, et al. Limited T cell receptor diversity ofHCV-specific T cell responses is associated with CTL escape. J Exp Med. (2004) 200:307. 10.1084/jem.20040638
Theofilopoulos AN, Kono DH, Baccala R. The multiple pathways to autoimmunity. Nat Immunol. (2017) 18:716. 10.1038/ni.373128632714
Prelog M. Aging of the immune system: a risk factor for autoimmunity? Autoimmunity Rev. (2006) 5:136–9. 10.1016/j.autrev.2005.09.00816431345
Haegert DG, Hackenbroch JD, Duszczyszyn D, Fitz-Gerald L, Zastepa E, Mason H, et al. Reduced thymic output and peripheral naive CD4 T-cell alterations in primary progressive multiple sclerosis (PPMS). J Neuroimmunol. (2011) 233:233–9. 10.1016/j.jneuroim.2010.12.00721272945
Somech R. T-cell receptor excision circles in primary immunodeficiencies and other T-cell immune disorders. Curr Opin Aller Clin Immunol. (2011) 11:517–24. 10.1097/ACI.0b013e32834c233a21971333
Jaïdane H, Hober D. Role of coxsackievirus B4 in the pathogenesis of type 1 diabetes. Diabetes Metab. (2008) 34:537–48. 10.1016/j.diabet.2008.05.00818951821
Kim KS, Hufnagel G, Chapman NM, Tracy S. The group B coxsackieviruses and myocarditis. Rev Med Virolgy. (2001) 11:355–68. 10.1002/rmv.32611746998
Horwitz MS, Ilic A, Fine C, Rodriguez E, Sarvetnick N. Presented antigen from damaged pancreatic β cells activates autoreactive T cells in virus-mediated autoimmune diabetes. J Clin Investig. (2002) 109:79–87. 10.1172/JCI021119811781353
Huber SA, Lodge PA. Coxsackievirus B-3 myocarditis in Balb/c mice. Evidence for autoimmunity to myocyte antigens. Am J Pathol. (1984) 116:21.6331168
Huber SA, Sartini D, Exley M. Vγ4+ T cells promote autoimmune CD8+ cytolytic T-lymphocyte activation in coxsackievirus B3-induced myocarditis in mice: role for CD4+ Th1 cells. J Virol. (2002) 76:10785–90. 10.1128/JVI.76.21.10785-10790.200212368321