The influence of traumatic axonal injury in thalamus and brainstem on level of consciousness at scene or admission: A clinical magnetic resonance imaging study
Moe, Hans Kristian; Moen, Kent Goran; Skandsen, Torilet al.
2018 • In Journal of Neurotrauma, 35 (7), p. 975-984
This Open Access article is distributed under the terms of the Creative
Commons Attribution Noncommercial License (http://creativecommons.org/licenses/by-nc/4.
All documents in ORBi are protected by a user license.
[en] The aim of this study was to investigate how traumatic axonal injury (TAI) lesions in the thalamus, basal ganglia, and brainstem on clinical brain magnetic resonance imaging (MRI) are associated with level of consciousness in the acute phase in patients with moderate to severe traumatic brain injury (TBI). There were 158 patients with moderate to severe TBI (7-70 years) with early 1.5T MRI (median 7 days, range 0-35) without mass lesion included prospectively. Glasgow Coma Scale (GCS) scores were registered before intubation or at admission. The TAI lesions were identified in T2∗gradient echo, fluid attenuated inversion recovery, and diffusion weighted imaging scans. In addition to registering TAI lesions in hemispheric white matter and the corpus callosum, TAI lesions in the thalamus, basal ganglia, and brainstem were classified as uni- or bilateral. Twenty percent of patients had TAI lesions in the thalamus (7% bilateral), 18% in basal ganglia (2% bilateral), and 29% in the brainstem (9% bilateral). One of 26 bilateral lesions in the thalamus or brainstem was found on computed tomography. The GCS scores were lower in patients with bilateral lesions in the thalamus (median four) and brainstem (median five) than in those with corresponding unilateral lesions (median six and eight, p = 0.002 and 0.022). The TAI locations most associated with low GCS scores in univariable ordinal regression analyses were bilateral TAI lesions in the thalamus (odds ratio [OR] 35.8; confidence interval [CI: 10.5-121.8], p < 0.001), followed by bilateral lesions in basal ganglia (OR 13.1 [CI: 2.0-88.2], p = 0.008) and bilateral lesions in the brainstem (OR 11.4 [CI: 4.0-32.2], p < 0.001). This Trondheim TBI study showed that patients with bilateral TAI lesions in the thalamus, basal ganglia, or brainstem had particularly low consciousness at admission. We suggest these bilateral lesions should be evaluated further as possible biomarkers in a new TAI-MRI classification as a worst grade, because they could explain low consciousness in patients without mass lesions.
Disciplines :
Neurology
Author, co-author :
Moe, Hans Kristian; Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Edvard Griegs Gate 8, Trondheim, 7030, Norway
Moen, Kent Goran; Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Edvard Griegs Gate 8, Trondheim, 7030, Norway, Department of Medical Imaging, Levanger Hospital, Levanger, Norway
Skandsen, Toril; Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Edvard Griegs Gate 8, Trondheim, 7030, Norway, Department of Physical Medicine and Rehabilitation, St. Olavs University Hospital, Trondheim, Norway
Kvistad, Kjell Arne; Department of Radiology and Nuclear Medicine, St. Olavs University Hospital, Trondheim, Norway
Laureys, Steven ; Université de Liège - ULiège > GIGA Consciousness: Coma Group
Håberg, Asta; Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Edvard Griegs Gate 8, Trondheim, 7030, Norway, Department of Radiology and Nuclear Medicine, St. Olavs University Hospital, Trondheim, Norway
Vik, Anne; Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Edvard Griegs Gate 8, Trondheim, 7030, Norway, Department of Neurosurgery, St. Olavs University Hospital, Trondheim, Norway
Language :
English
Title :
The influence of traumatic axonal injury in thalamus and brainstem on level of consciousness at scene or admission: A clinical magnetic resonance imaging study
Publication date :
2018
Journal title :
Journal of Neurotrauma
ISSN :
0897-7151
eISSN :
1557-9042
Publisher :
Mary Ann Liebert, United States - New York
Volume :
35
Issue :
7
Pages :
975-984
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
NTNU - Norges Teknisk-Naturvitenskapelige Universitet AMF - Axel Muusfeldts Fond Norges Forskningsråd
Skandsen, T., Kvistad, K. A., Solheim, O., Strand, I. H., Folvik, M., and Vik, A. (2010). Prevalence and impact of diffuse axonal injury in patients with moderate and severe head injury: a cohort study of early magnetic resonance imaging findings and 1-year outcome. J. Neurosurg. 113, 556-563.
Adams, J. H., Doyle, D., Ford, I., Gennarelli, T. A., Graham, D. I., and Mclellan, D. R. (1989). Diffuse axonal injury in head injury: Definition, diagnosis and grading. Histopathology 15, 49-59.
Murray, J. G., Gean, A. D., and Evans, S. J. (1996). Imaging of acute head injury. Semin. Ultrasound CT MR 17, 185-205.
Gentry, L. R. (1994). Imaging of closed head injury. Radiology 191, 1-17.
Ommaya, A. K., and Gennarelli, T. A. (1974). Cerebral concussion and traumatic unconsciousness. Correlation of experimental and clinical observations on blunt head injuries. Brain 97, 633-654.
Bramlett, H. M., Kraydieh, S., Green, E. J., and Dietrich, W. D. (1997). Temporal and regional patterns of axonal damage following traumatic brain injury: a beta-amyloid precursor protein immunocytochemical study in rats. J. Neuropathol. Exp. Neurol. 56, 1132-1141.
Lifshitz, J., Kelley, B. J., and Povlishock, J. T. (2007). Perisomatic thalamic axotomy after diffuse traumatic brain injury is associated with atrophy rather than cell death. J. Neuropathol. Exp. Neurol. 66, 218-229.
Moen, K. G., Brezova, V., Skandsen, T., Håberg, A. K., Folvik, M., and Vik, A. (2014). Traumatic axonal injury: the prognostic value of lesion load in corpus callosum, brain stem, and thalamus in different magnetic resonance imaging sequences. J. Neurotrauma 31, 1486-1496.
Teasdale, G., Maas, A., Lecky, F., Manley, G., Stocchetti, N., and Murray, G. (2014). The Glasgow Coma Scale at 40 years: standing the test of time. Lancet Neurol. 13, 844-854.
Moruzzi, G., and Magoun, H. W. (1949). Brainstem reticular formation and activation of the EEG. Elecroencephalogr. Clin. Neurophysiol. 1, 455-473.
Laureys, S., and Schiff, N. D. (2012). Coma and consciousness: paradigms (re)framed by neuroimaging. Neuroimage 61, 478-491.
Majerus, S., Gill-Thwaites, H., Andrews, K., and Laureys, S. (2005). Behavioral evaluation of consciousness in severe brain damage. Prog. Brain Res. 150, 397-413.
Skandsen, T., Kvistad, K. A., Solheim, O., Lydersen, S., Strand, I. H., and Vik, A. (2011). Prognostic value of magnetic resonance imaging in moderate and severe head injury: a prospective study of early MRI findings and one-year outcome. J. Neurotrauma 28, 691-699.
Schaefer, P. W., Huisman, T. A., Sorensen, A. G., Gonzalez, R. G., and Schwamm, L. H. (2004). Diffusion-weighted MR imaging in closed head injury: high correlation with initial glasgow coma scale score and score on modified Rankin scale at discharge. Radiology 233, 58-66.
Gerber, D. J., Weintraub, A. H., Cusick, C. P., Ricci, P. E., and Whiteneck, G. G. (2004). Magnetic resonance imaging of traumatic brain injury: relationship of T2SE and T2GE to clinical severity and outcome. Brain Inj. 18, 1083-1097.
Geurts, B. H., Andriessen, T. M., Goraj, B. M., and Vos, P. E. (2012). The reliability of magnetic resonance imaging in traumatic brain injury lesion detection. Brain Inj. 26, 1439-1450.
Grados, M. A., Slomine, B. S., Gerring, J. P., Vasa, R., Bryan, N., and Denckla, M. B. (2001). Depth of lesion model in children and adolescents with moderate to severe traumatic brain injury: use of SPGR MRI to predict severity and outcome. J. Neurol. Neurosurg. Psychiatry 70, 350-358.
Levin, H. S., Williams, D., Crofford, M. J., High, W. M. Jr., Eisenberg, H. M., Amparo, E. G., Guinto, F. C. Jr., Kalisky, Z., Handel, S. F., and Goldman, A. M. (1988). Relationship of depth of brain lesions to consciousness and outcome after closed head injury. J. Neurosurg. 69, 861-866.
Anderson, C. V., Wood, D. M., Bigler, E. D., and Blatter, D. D. (1996). Lesion volume, injury severity, and thalamic integrity following head injury. J. Neurotrauma 13, 59-65.
Schonberger, M., Ponsford, J., Reutens, D., Beare, R., and O'Sullivan, R. (2009). The relationship between age, injury severity, and MRI findings after traumatic brain injury. J. Neurotrauma 26, 2157-2167.
Moen, K. G., Skandsen, T., Folvik, M., Brezova, V., Kvistad, K. A., Rydland, J., Manley, G. T., and Vik, A. (2012). A longitudinal MRI study of traumatic axonal injury in patients with moderate and severe traumatic brain injury. J. Neurol. Neurosurg. Psychiatry 83, 1193-200.
Stein, S. C., and Spettell, C. (1995). The Head Injury Severity Scale (HISS): a practical classification of closed-head injury. Brain Inj. 9, 437-444.
Matsusue, E., Sugihara, S., Fujii, S., Ohama, E., Kinoshita, T., and Ogawa, T. (2006). White matter changes in elderly people: MRpathologic correlations. Magn. Reson. Med. Sci. 5, 99-104.
Rundhaug, N. P., Moen, K. G., Skandsen, T., Schirmer-Mikalsen, K., Lund, S. B., Hara, S., and Vik, A. (2015). Moderate and severe traumatic brain injury: effect of blood alcohol concentration on Glasgow Coma Scale score and relation to computed tomography findings. J. Neurosurg. 122, 211-218.
Lange, R. T., Iverson, G. L., Brubacher, J. R., and Franzen, M. D. (2010). Effect of blood alcohol level on Glasgow Coma Scale scores following traumatic brain injury. Brain Inj. 24, 919-927.
Marshall, L. F., Marshall, S. B., Klauber, M. R., van Berkum Clark, M., Eisenberg, H. M., Jane, J. A., Luerssen, T. G., Marmarou, A., and Foulkes, M. A. (1991). A new classification of head injury based on computerized tomography. J. Neurosurg. 75, S14-S20.
Maas, A. I., Hukkelhoven, C. W., Marshall, L. F., and Steyerberg, E. W. (2005). Prediction of outcome in traumatic brain injury with computed tomographic characteristics: A comparison between the computed tomographic classification and combinations of computed tomographic predictors. Neurosurgery 57, 1173-1182.
Jennett, B., Snoek, J., Bond, M. R., and Brooks, N. (1981). Disability after severe head injury: observations on the use of the Glasgow Outcome Scale. J. Neurol. Neurosurg. Psychiatry 44, 285-293.
de Leeuw, F. E., de Groot, J. C., Achten, E., Oudkerk, M., Ramos, L. M., Heijboer, R., Hofman, A., Jolles, J., van Gijn, J., and Breteler, M. M. (2001). Prevalence of cerebral white matter lesions in elderly people: a population based magnetic resonance imaging study. The Rotterdam Scan Study. J. Neurol. Neurosurg. Psychiatry 70, 9-14.
Fazekas, F., Chawluk, J. B., Alavi, A., Hurtig, H., and Zimmerman, R. A. (1987). MR signal abnormalities at 1. 5 T in Alzheimer's dementia and normal aging. Am. J. Neuroradiol. 8, 421-426.
Bernat, J. L. (2006). Chronic disorders of consciousness. Lancet 367, 1181-1192.
Zeman, A. (2001). Consciousness. Brain 124, 1263-1289.
Schiff, N. D. (2016). Central thalamic deep brain stimulation to support anterior forebrain mesocircuit function in the severely injured brain. J. Neural Transm. 123, 797-806.
Posner, J. B., and Plum, F. (2007). Plum and Posner's Diagnosis of Stupor and Coma. Oxford University Press: New York.
Parvizi, J., and Damasio, A. (2001). Consciousness and the brainstem. Cognition 79, 135-160.
Smith, D. H., Nonaka, M., Miller, R., Leoni, M., Chen, X. H., Alsop, D., and Meaney, D. F. (2000). Immediate coma following inertial brain injury dependent on axonal damage in the brainstem. J. Neurosurg. 93, 315-322.
Firsching, R., Woischneck, D., Klein, S., Reißberg, S., Döhring, W., and Peters, B. (2001). Classification of severe head injury based on magnetic resonance imaging. Acta Neurochir. (Wien) 143, 263-271.
Ward, L. M. (2011). The thalamic dynamic core theory of conscious experience. Conscious. Cogn. 20, 464-486.
Laureys, S., Faymonville, M. E., Luxen, A., Lamy, M., Franck, G., and Maquet, P. (2000). Restoration of thalamocortical connectivity after recovery from persistent vegetative state. Lancet 355, 1790-1791.
Zappella, N., Merceron, S., Nifle, C., Hilly-Ginoux, J., Bruneel, F., Troche, G., Cordoliani, Y. S., Bedos, J. P., Pico, F., and Legriel, S. (2014). Artery of Percheron infarction as an unusual cause of coma: three cases and literature review. Neurocrit. Care 20, 494-501.
Alkire, M. T., and Miller, J. (2005). General anesthesia and the neural correlates of consciousness. Prog. Brain Res. 150, 229-244.
Jennett, B., Adams, J. H., Murray, L. S., and Graham, D. I. (2001). Neuropathology in vegetative and severely disabled patients after head injury. Neurology 56, 486-490.
Lutkenhoff, E. S., Chiang, J., Tshibanda, L., Kamau, E., Kirsch, M., Pickard, J. D., Laureys, S., Owen, A. M., and Monti, M. M. (2015). Thalamic and extrathalamic mechanisms of consciousness after severe brain injury. Ann. Neurol. 78, 68-76.
Nelson, D. W., Nyström, H., MacCallum, R. M., Thornquist, B., Lilja, A., Bellander, B. M., Rudehill, A., Wanecek, M., and Weitzberg, E. (2010). Extended analysis of early computed tomography scans of traumatic brain injured patients and relations to outcome. J. Neurotrauma 27, 51-64.
Messori, A., Polonara, G., Mabiglia, C., and Salvolini, U. (2003). Is haemosiderin visible indefinitely on gradient-echo MRI following traumatic intracerebral haemorrhage? Neuroradiology 45, 881-886.
Parizel, P. M., Van Goethem, J. W., ö zsarlak, O. Maes, M., and Phillips, C. D. (2005). New developments in the neuroradiological diagnosis of craniocerebral trauma. Eur. Radiol. 15, 569-581.
Moen, K. G., Vik, A., Olsen, A., Skandsen, T., Håberg, A. K., Evensen, K. A., and Eikenes, L. (2016). Traumatic axonal injury: Relationships between lesions in the early phase and diffusion tensor imaging parameters in the chronic phase of traumatic brain injury. J. Neurosci. Res. 94, 623-635.
Izzy, S., Mazwi, N. L., Martinez, S., Spencer, C. A., Klein, J. P., Parikh, G., Glenn, M. B., Greenberg, S. M., Greer, D. M., Wu, O., and Edlow, B. L. (2017). Revisiting grade 3 diffuse axonal injury: not all brainstem microbleeds are prognostically equal. Neurocrit. Care 27, 199-207.
Abu Hamdeh, S., Marklund, N., Lannsjo, M., Howells, T., Raininko, R., Wikstrom, J., and Enblad, P. (2017). Extended anatomical grading in diffuse axonal injury using MRI: hemorrhagic lesions in the substantia nigra and mesencephalic tegmentum indicate poor long-term outcome. J. Neurotrauma 34, 341-352.
Scheid, R., Ott, D. V, Roth, H., Schroeter, M. L., and von Cramon, D. Y. (2007). Comparative magnetic resonance imaging at 1. 5 and 3 Tesla for the evaluation of traumatic microbleeds. J. Neurotrauma 24, 1811-1816.