[fr] Nous étudions les fonctions qui admettent une différentielle, au sens de Fréchet, sur un ensemble compact. On s'intéresse notamment à diverses propriétés topologiques de l'espace regroupant ces fonctions, muni d'une norme naturelle. Entre autres, la complétude de ce dernier est caractérisée et la densité des jets de Whitney est établie.
Disciplines :
Mathematics
Author, co-author :
Loosveldt, Laurent ; Université de Liège - ULiège > Département de mathématique > Analyse - Analyse fonctionnelle - Ondelettes
Language :
English
Title :
What are continuously differentiable functions on compact sets?
Alternative titles :
[fr] Quelles sont les fonctions continûment différentiables sur un ensemble compact?
Publication date :
18 February 2020
Event name :
Séminaire interne entre doctorants
Event date :
18 février 2020
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique
Commentary :
Il s'agit d'une présentation orale de résultats obtenus en collaboration avec Leonhard Frerick et Jochen Wengenroth (Universität Trier)
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.