[fr] Introduction. L’utilisation excessive de fongicides chimiques continue à pousser la recherche vers des alternatives pour la protection des cultures qui soient respectueuses de l’environnement, mais aussi novatrices. Littérature. Les champignons produisent divers mélanges de composés en phase gazeuse, appelés Composés Organiques Volatils (COVs). Ils sont capables de se diffuser dans le sol et dans l’atmosphère et d’inhiber les activités des pathogènes fongiques. Dans cette section, nous résumerons les connaissances récentes sur le potentiel inhibiteur des Composés Organiques Volatils contre les champignons pathogènes en mettant l’accent sur l’effet des COVs fongiques. Dans la pratique, nous y dévoilerons les premières recherches déchiffrant leur mode d’action et les éventuels effets phytotoxiques non spécifiques sur le microbiome environnemental ainsi que sur les plantes. Conclusions. Cet article porte sur les nouvelles techniques utilisées par les chercheurs qui mettent l’accent sur la mycofumigation afin d’optimiser la formulation d’une nouvelle génération de biofongicides. Ainsi, se dessine un nouvel horizon en matière de lutte biologique contre les maladies des cultures. [en] Introduction. Excessive use of chemical fungicides continues to drive research towards environmentally friendly and innovative alternatives for crop protection. Literature. Fungi produce various mixtures of compounds in the gas phase, called Volatile Organic Compounds (VOCs). They are able to diffuse into the soil and into the atmosphere and inhibit the activities of fungal pathogens. In this section, we will summarize recent knowledge on the inhibitory potential of Volatile Organic Compounds against pathogenic fungi with a focus on the effect of fungal VOCs. In practice, we will unveil initial research revealing their mode of action and any non-specific phytotoxic effects on the environmental microbiome and on plants. Conclusions. This article discusses new techniques used by researchers that focus on mycofumigation to optimize the formulation of a new generation of biofungicides. Thus, a new horizon is emerging for biological control of crop diseases.
Abrahim D., Braguini W.L., Kelmer-Bracht A.M. & Ishii-Iwamoto E.L., 2000. Effects of four monoterpenes on germination, primary root growth, and mitochondrial respiration of maize. J. Chem. Ecol., 26, 611-624.
Ajith P. & Lakshmidevi N., 2010. Effect of volatile and non-volatile compounds from Trichoderma spp. against Colletotrichum capsici incitant of anthracnose on bell peppers. Nat. Sci., 8, 265-269.
Al-Khaliel A.S., 2010. Effects of arbuscular mycorrhization in sterile and non-sterile soils. Trop. Life Sci. Res., 21, 55.
Amoore J.E. & Hautala E., 1983. Odor as an ald to chemical safety: odor thresholds compared with threshold limit values and volatilities for 214 industrial chemicals in air and water dilution. J. Appl. Toxicol., 3, 272-290, doi. org/10.1002/jat.2550030603
Arimura G.-I., Shiojiri K. & Karban R., 2010. Acquired immunity to herbivory and allelopathy caused by airborne plant emissions. Phytochemistry, 71, 1642-1649, doi.org/10.1016/j.phytochem.2010.06.021
Berendsen R. et al., 2013. Effects of the mushroom-volatile 1-octen-3-ol on dry bubble disease. Appl. Microbiol. Biotechnol., 97, 5535-5543, doi.org/10.1007/s00253-013-4793-1
Browning M. et al., 2006. Potential of butyric acid for control of soil-borne fungal pathogens and nematodes affecting strawberries. Soil Biol. Biochem., 38, 401-404, doi.org/10.1016/j.soilbio.2005.05.020
BTEX Material Data Safety Sheet. www.mathesontrigas. com/ pdfs/msds/math0082.pdf, (July 3, 2009).
Cernava T. et al., 2015. A novel assay for the detection of bioactive volatiles evaluated by screening of lichen-associated bacteria. Front. Microbiol., 6, doi. org/10.3389/fmicb.2015.00398
Chami F. et al., 2005. Oregano and clove essential oils induce surface alteration of Saccharomyces cerevisiae. Phytother. Res., 19, 405-408, doi.org/10.1002/ptr.1528
Chitarra G.S., Abee T., Rombouts F.M. & Dijksterhuis J., 2005. 1-Octen-3-ol inhibits conidia germination of Penicillium paneum despite of mild effects on membrane permeability, respiration, intracellular pH, and changes the protein composition. FEMS Microbiol. Ecol., 54, 67-75, doi.org/10.1016/j.femsec.2005.02.013
Chuankun X., Minghe M., Leming Z. & Keqin Z., 2004. Soil volatile fungistasis and volatile fungistatic compounds. Soil Biol. Biochem., 36, 1997-2004, doi.org/10.1016/j. soilbio.2004.07.020
Corcuff R., Mercier J., Tweddell R. & Arul J., 2011. Effect of water activity on the production of volatile organic compounds by Muscodor albus and their effect on three pathogens in stored potato. Fungal Biol., 115, 220-227, doi.org/10.1016/j.funbio.2010.12.005
Daisy B. et al., 2002. Muscodor vitigenus anam. sp. nov., an endophyte from Paullinia paullinioides. Mycotaxon, 84, 39-50, doi.org/10.1364/ol.28.002067
De Boer J.F. et al., 2003. Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt. Lett., 28, 2067-2069.
Delory B.M., Delaplace P., du Jardin P. & Fauconnier M.-L., 2016. Barley (Hordeum distichon L.) roots synthesise volatile aldehydes with a strong age-dependent pattern and release (E)-non-2-enal and (E, Z)-nona-2, 6-dienal after mechanical injury. Plant Physiol. Biochem., 104, 134-145, doi.org/10.1016/j.plaphy.2016.03.028
Dobbs C.G. & Gash M.J., 1965. Microbial and residual mycostasis in soils. Nature, 207, 1354-1356, doi. org/10.1038/2071354a0
Dobbs C. & Hinson W., 1953. A widespread fungistasis in soils. Nature, 172, 197-199, doi.org/10.1038/172197a0
Dudareva N., Klempien A., Muhlemann J.K. & Kaplan I., 2013. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol., 198, 16-32, doi.org/10.1111/nph.12145
Effmert U., Kalderás J., Warnke R. & Piechulla B., 2012. Volatile mediated interactions between bacteria and fungi in the soil. J. Chem. Ecol., 38, 665-703, doi. org/10.1007/s10886-012-0135-5
Evans H. et al., 2011. Volatile chemicals from leaf litter are associated with invasiveness of a neotropical weed in Asia. Ecology, 92, 316-324, doi.org/10.1890/10-0400.1
Ezra D. & Strobel G.A., 2003. Effect of substrate on the bioactivity of volatile antimicrobials produced by Muscodor albus. Plant Sci., 165, 1229-1238, doi. org/10.1016/s0168-9452(03)00330-3
Fialho M.B. et al., 2010. Volatile organic compounds produced by Saccharomyces cerevisiae inhibit the in vitro development of Guignardia citricarpa, the causal agent of citrus black spot. World J. Microbiol. Biotechnol., 26, 925-932, doi.org/10.1007/s11274-009-0255-4
Fialho M.B., Moraes M.H.D.d., Tremocoldi A.R. & Pascholati S.F., 2011b. Potential of antimicrobial volatile organic compounds to control Sclerotinia sclerotiorum in bean seeds. Pesquisa Agropecuária Bras., 46, 137-142, doi.org/10.1590/s0100-204x2011000200004
Fiers M., Lognay G., Fauconnier M.-L. & Jijakli M.H., 2013. Volatile compound-mediated interactions between barley and pathogenic fungi in the soil. PLoS One, 8, e66805, doi.org/10.1371/journal.pone.0066805
Fisher M.C. et al., 2012. Emerging fungal threats to animal, plant and ecosystem health. Nature, 484, 186-194, doi. org/10.1038/nature10947
Friedman M., Henika P.R. & Mandrell R.E., 2002. Bactericidal activities of plant essential oils and some of their isolated constituents against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and Salmonella enterica. J. Food Prot., 65, 1545-1560, doi. org/10.4315/0362-028x-65.10.1545
Goates B.J. & Mercier J., 2009. Effect of biofumigation with volatiles from Muscodor albus on the viability of Tilletia spp. teliospores. Can. J. Microbiol., 55, 203-206, doi.org/10.1139/w08-104
Grimme E. et al., 2007. Comparison of Muscodor albus volatiles with a biorational mixture for control of seedling diseases of sugar beet and root-knot nematode on tomato. Plant Dis., 91, 220-225, doi.org/10.1094/pdis-91-2-0220
Hammer K., Carson C. & Riley T., 2003. Antifungal activity of the components of Melaleuca alternifolia (tea tree) oil. J. Appl. Microbiol., 95, 853-860, doi.org/10.1046/j.1365-2672.2003.02059.x
He H., Song Q., Wang Y. & Yu S., 2014. Phytotoxic effects of volatile organic compounds in soil water taken from a Eucalyptus urophylla plantation. Plant Soil, 377, 203-215, doi.org/10.1007/s11104-013-1989-1
Hora T., Baker R. & Griffin G., 1977. Experimental evaluation of hypotheses explaining the nature of soil fungistasis. Phytopathology, 67, 373-379, doi. org/10.1094/phyto-67-373
Hornby J.M. & Nickerson K.W., 2004. Enhanced production of farnesol by Candida albicans treated with four azoles. Antimicrob. Agents Chemother., 48, 2305-2307, doi. org/10.1128/aac.48.6.2305-2307.2004
Hutchings M.L., Hiller D.A., Berro J. & Strobel S.A., 2017. Mycofumigation through production of the volatile DNA methylating agent N-methyl-N-nitrosoisobutyramide by fungi in the genus Muscodor. J. Biol. Chem., 292, 7358-7371, doi.org/10.1074/jbc.m117.779009
Inamdar A.A., Moore J.C., Cohen R.I. & Bennett J.W., 2012. A model to evaluate the cytotoxicity of the fungal volatile organic compound 1-octen-3-ol in human embryonic stem cells. Mycopathologia, 173, 13-20, doi. org/10.1007/s11046-011-9457-z
Jimenez J.I., Margolis J.S., Baird J.K. & Lego S.F., 2012. Compounds derived from Muscodor fungi. Google Patents US 2012/0058058 A1 Mar. 8, 2012
Kaddes A. et al., 2016. Volatile Organic Compounds: a new tool to control barley pathogens? Molecules, 21(9), 1124
Kaddes A. et al., 2019. Antifungal properties of two volatile organic compounds on barley pathogens and introduction to their mechanism of action. Int. J. Environ. Res. Public Health, 16, 2866, doi.org/10.3390/ijerph16162866
Koitabashi M., Kajitani Y. & Hirashima K., 2004. Antifungal substances produced by fungal strain Kyu-W63 from wheat leaf and its taxonomic position. J. Gen. Plant Pathol., 70, 124-130, doi.org/10.1007/s10327-003-0095-2
Lacey L. et al., 2009. Efficacy of the biofumigant fungus Muscodor albus (Ascomycota: Xylariales) for control of codling moth (Lepidoptera: Tortricidae) in simulated storage conditions. J. Econ. Entomol., 102, 43-49, doi. org/10.1603/029.102.0107
Lee S. et al., 2009. Mycofumigation with Oxyporus latemarginatus EF069 for control of postharvest apple decay and Rhizoctonia root rot on moth orchid. J. Appl. Microbiol., 106, 1213-1219, doi.org/10.1111/j.1365-2672.2008.04087.x
Lee S. et al., 2014. Arabidopsis thaliana for testing the phytotoxicity of volatile organic compounds. Plant Growth Regul., 74, 177-186, doi.org/10.1007/s10725-014-9909-9
Lemfack M.C. et al., 2017. mVOC 2.0: a database of microbial volatiles. Nucleic Acids Res., 46, D1261-D1265, doi.org/10.1093/nar/gkx1016
Li Q. et al., 2015. Biofumigation on post-harvest diseases of fruits using a new volatile-producing fungus of Ceratocystis fimbriata. PLoS One, 10, e0132009, doi. org/10.1371/journal.pone.0132009
Lockwood W. & Langston Jr L., 1964. A reliable and easily sectioned epoxy embedding medium. Anat. Rec., 150, 129-139, doi.org/10.1002/ar.1091500204
Malmierca M.G. et al., 2012. Involvement of Trichoderma trichothecenes in the biocontrol activity and in the induction of plant defense related genes. Appl. Environ. Microbiol., 78, 4856-4868, doi.org/10.1128/aem.00385-12
Malmierca M.G. et al., 2015. Production of trichodiene by Trichoderma harzianum alters the perception of this biocontrol strain by plants and antagonized fungi. Environ. Microbiol., 17, 2628-2646, doi. org/10.1111/1462-2920.12506
McGuinness M. & Dowling D., 2009. Plant-associated bacterial degradation of toxic organic compounds in soil. Int. J. Environ. Res. Public Health, 6, 2226-2247.
Mercier J. & Jiménez J.I., 2004. Control of fungal decay of apples and peaches by the biofumigant fungus Muscodor albus. Postharvest Biol. Technol., 31, 1-8, doi.org/10.1016/j.postharvbio.2003.08.004
Mercier J. & Smilanick J., 2005. Control of green mold and sour rot of stored lemon by biofumigation with Muscodor albus. Biol. Control, 32, 401-407, doi.org/10.1016/j. biocontrol.2004.12.002
Mercier J., Jiménez-Santamaría J.I. & Tamez-Guerra P., 2007. Development of the volatile-producing fungus Muscodor albus Worapong, Strobel, and Hess as a novel antimicrobial biofumigant. Rev. Mex. Fitopatología, 25, 173-179.
Meshram V., Kapoor N. & Saxena S., 2013. Muscodor kashayum sp. nov. – a new volatile anti-microbial producing endophytic fungus. Mycology, 4, 196-204, doi.org/10.1080/21501203.2013.877990
Minerdi D., Bossi S., Gullino M.L. & Garibaldi A., 2009. Volatile organic compounds: a potential direct long-distance mechanism for antagonistic action of Fusarium oxysporum strain MSA 35. Environ. Microbiol., 11, 844-854, doi.org/10.1111/j.1462-2920.2008.01805.x
Morath S.U., Hung R. & Bennett J.W., 2012. Fungal volatile organic compounds: a review with emphasis on their biotechnological potential. Fungal Biol. Rev., 26, 73-83, doi.org/10.1016/j.fbr.2012.07.001
Morgenstern R.D., 2014. Economic analyses at EPA: assessing regulatory impact. New York, NY, USA: Routledge, doi.org/10.4324/9781315060682
Muller W.H., 1965. Volatile materials produced by Salvia leucophylla: effects on seedling growth and soil bacteria. Bot. Gazette, 126, 195-200, doi.org/10.1086/336319
Ogura T., Sunairi M. & Nakajima M., 2000. 2-Methylisoborneol and geosmin, the main sources of soil odor, inhibit the germination of Brassicaceae seeds. Soil Sci. Plant Nutr., 46, 217-227.
Peñuelas J. et al., 2014. Biogenic volatile emissions from the soil. Plant Cell Environ., 37, 1866-1891, doi. org/10.1111/pce.12340
Polizzi V. et al., 2011. Autoregulatory properties of (+)-thujopsene and influence of environmental conditions on its production by Penicillium decumbens. Microb. Ecol., 62, 838-852, doi.org/10.1007/s00248-011-9905-9
Quimby Jr P., Zidack N., Boyette C. & Grey W., 1999. A simple method for stabilizing and granulating fungi. Biocontrol Sci. Technol., 9, 5-8, doi. org/10.1080/09583159929857
Romine M. & Baker R., 1973. Soil fungistasis: evidence for an inhibitory factor. Phytopathology, 63, 756.
Saxena S., Meshram V. & Kapoor N., 2014. Muscodor darjeelingensis, a new endophytic fungus of Cinnamomum camphora collected from northeastern Himalayas. Sydowia, 66, 55-67.
Schalchli H. et al., 2011. Antifungal activity of volatile metabolites emitted by mycelial cultures of saprophytic fungi. Chem. Ecol., 27, 503-513, doi.org/10.1080/02757 540.2011.596832
Schüepp H. & Frei E., 1969. Soil fungistasis with respect to pH and profile. Can. J. Microbiol., 15, 1273-1279, doi. org/10.1139/m69-231
Semighini C.P. et al., 2006. Farnesol‐induced apoptosis in Aspergillus nidulans reveals a possible mechanism for antagonistic interactions between fungi. Mol. Microbiol., 59, 753-764, doi.org/10.1111/j.1365-2958.2005.04976.x
Siegel E. & Wason S., 1986. Mothball toxicity. Pediatr. Clinics of North Am., 33, 369-374, doi.org/10.1016/s0031-3955(16)35007-6
Singh S.K. et al., 2011. An endophytic Phomopsis sp. possessing bioactivity and fuel potential with its volatile organic compounds. Microb. Ecol., 61, 729-739, doi. org/10.1007/s00248-011-9818-7
Stinson A., Zidack N., Strobel G. & Jacobsen B., 2003a. Mycofumigation with Muscodor albus and Muscodor roseus for control of seedling diseases of sugar beet and Verticillium wilt of eggplant. Plant Dis., 87, 1349-1354, doi.org/10.1094/pdis.2003.87.11.1349
Stinson M. et al., 2003b. An endophytic Gliocladium sp. of Eucryphia cordifolia producing selective volatile antimicrobial compounds. Plant Sci., 165, 913-922, doi. org/10.1016/s0168-9452(03)00299-1
Strobel G., Dirkse E., Sears J. & Markworth C., 2001. Volatile antimicrobials from Muscodor albus, a novel endophytic fungus. Microbiology, 147, 2943-2950, doi. org/10.1099/00221287-147-11-2943
Strobel G. et al., 2008. Synergism among volatile organic compounds resulting in increased antibiosis in Oidium sp. FEMS Microbiol. Lett., 283, 140-145.
Strobel G., Manker D.C. & Mercier J., 2010. Endophytic fungi and methods of use. Google Patents.
Strobel G. et al., 2011. An endophytic/pathogenic Phoma sp. from creosote bush producing biologically active volatile compounds having fuel potential. FEMS Microbiol. Lett., 320, 87-94, doi.org/10.1111/j.1574-6968.2011.02297.x
Suwannarach N. et al., 2013a. Molecular and morphological evidence support four new species in the genus Muscodor from northern Thailand. Ann. Microbiol., 63, 1341-1351, doi.org/10.1007/s13213-012-0593-6
Suwannarach N. et al., 2013b. Biofumigation with the endophytic fungus Nodulisporium spp. CMU-UPE34 to control postharvest decay of citrus fruit. Crop Prot., 45, 63-70, doi.org/10.1016/j.cropro.2012.11.015
Suwannarach N. et al., 2016. Evaluation of Muscodor suthepensis strain CMU‐Cib462 as a postharvest biofumigant for tangerine fruit rot caused by Penicillium digitatum. J. Sci. Food Agric., 96, 339-345, doi. org/10.1002/jsfa.7099
Syed R.U.H. & Geary B., 2013. An endophytic Nodulisporium sp. from Central America producing volatile organic compounds with both biological and fuel potential. J. Microbiol. Biotechnol., 23, 29-35, doi. org/10.4014/jmb.1208.04062
Thakore Y., 2006. The biopesticide market for global agricultural use. Ind. Biotechnol., 2, 194-208, doi. org/10.1089/ind.2006.2.194
Tomsheck A.R. et al., 2010. Hypoxylon sp., an endophyte of Persea indica, producing 1, 8-cineole and other bioactive volatiles with fuel potential. Microb. Ecol., 60, 903-914, doi.org/10.1007/s00248-010-9759-6
USEPA Air Toxics Web Site. www.epa.gov/sites/production/ files/2016-09/documents/benzene.pdf, (March 13, 2020).
Wheatley R., 2002. The consequences of volatile organic compound mediated bacterial and fungal interactions. Antonie Van Leeuwenhoek, 81, 357-364.
Worapong J. & Strobel G.A., 2009. Biocontrol of a root rot of kale by Muscodor albus strain MFC2. BioControl, 54, 301-306, doi.org/10.1007/s10526-008-9175-8
Yu D. et al., 2015. Antifungal modes of action of tea tree oil and its two characteristic components against Botrytis cinerea. J. Appl. Microbiol., 119, 1253-1262, doi. org/10.1111/jam.12939
Zhang F., Yang X., Ran W. & Shen Q., 2014a. Fusarium oxysporum induces the production of proteins and volatile organic compounds by Trichoderma harzianum T-E5. FEMS Microbiol. Lett., 359, 116-123, doi. org/10.1111/1574-6968.12582.
Zhang Q. et al., 2014b. Diversity and biocontrol potential of endophytic fungi in Brassica napus. Biol. Control, 72, 98-108, doi.org/10.1016/j.biocontrol.2014.02.018
Zhang Q. et al., 2015. Production of anti-fungal volatiles by non-pathogenic Fusarium oxysporum and its efficacy in suppression of Verticillium wilt of cotton. Plant Soil, 392, 101-114, doi.org/10.1007/s11104-015-2448-y
Zhao J. et al., 2010. Antimicrobial metabolites from the endophytic fungus Pichia guilliermondii isolated from Paris polyphylla var. yunnanensis. Molecules, 15, 7961-7970, doi.org/10.3390/molecules15117961
Zou C.-S. et al., 2007. Possible contributions of volatile-producing bacteria to soil fungistasis. Soil Biol. Biochem., 39, 2371-2379, doi.org/10.1016/j.soilbio.2007.04.009