Communication poster (Colloques et congrès scientifiques)
Which cellular mechanism yields compatibility between brain states, synaptic plasticity and neuromodulation?
Jacquerie, Kathleen; Drion, Guillaume
2019Society for Neuroscience annual meeting 2019
 

Documents


Texte intégral
JacquerieKathleen_SfN2019.pdf
Postprint Auteur (4.96 MB)
The author has updated her lastname in 2020 (Coutisse became Jacquerie)
Télécharger

Tous les documents dans ORBi sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Computational neuroscience; brain states; neuromodulation; synaptic plasticity; neuroscience
Résumé :
[en] Learning and memory are attributed to the ability of neurons to modify their connections with other cells based on experience, a property called synaptic plasticity. On the other hand, brain information processing is shaped by fluctuations in neuronal rhythms at the cellular and population levels, each defining distinctive brain states. Switches between these brain states, driven by neuromodulation, can be fast and localized, such as those observed in Parkinson disease patients stopping, almost instantaneously, tremor symptoms when deep-brain stimulation is turned on. Switches can also be global and long lasting, such as those observed during the wake-sleep transition. The coexistence of these two mechanisms raises challenging questions: how can switches in brain states remain reliable despite constant rewiring of neuron connectivity and how is synaptic plasticity a!ected by switches in brain states? Here, we highlight the role of slow regenerativity, a cellular dynamical property, in the generation of brain state switches that are robust to cellular heterogeneity, independent from network connectivity, and thus compatible with synaptic plasticity. This key mechanism is accessible by all neurons that embed slowly activating voltage-gated calcium channels or slowly inactivating potassium channels in their membrane. Yet, in computational neuron models, this channel dynamics is often considered as an instantaneous event and it is absent from all available hybrid models. To demonstrate this point, we compare the robustness of 6 published thalamic neuron conductance-based models at the cellular, circuit and population levels [Destexhe, 1996; Destexhe, 1998; Drion, 2018; Huguenard and McCormick, 1992; Rush and Rinzel, 1994; Wang, 1994]. We show that the robustness of rhythms at the population level correlates with the presence of slow regenerativity at the cellular level. Our work confirms that slow regenerativity is independent on the type of neurons, the intrinsic frequency of the firing pattern and valid for global and lasting brain state switches as well as local and fast. Second, we show that this mechanism can be embedded in simple hybrid neuron models without increasing the model complexity. These results open the possibility to study the interactions between switches in network rhythmic activity and synaptic plasticity in large neuronal populations.
Disciplines :
Ingénierie, informatique & technologie: Multidisciplinaire, généralités & autres
Sciences de la santé humaine: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
Jacquerie, Kathleen  ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Drion, Guillaume ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Langue du document :
Anglais
Titre :
Which cellular mechanism yields compatibility between brain states, synaptic plasticity and neuromodulation?
Date de publication/diffusion :
22 octobre 2019
Nom de la manifestation :
Society for Neuroscience annual meeting 2019
Lieu de la manifestation :
Chicago, Etats-Unis
Date de la manifestation :
from 19-10-19 to 23-10-19
Manifestation à portée :
International
Organisme subsidiant :
F.R.S.-FNRS - Fonds de la Recherche Scientifique
Disponible sur ORBi :
depuis le 27 avril 2020

Statistiques


Nombre de vues
176 (dont 20 ULiège)
Nombre de téléchargements
58 (dont 8 ULiège)

Bibliographie


Publications similaires



Contacter ORBi