Yin, H., Yip, A.C.K., A review on the production and purification of biomass-derived hydrogen using emerging membrane technologies. Catalysts, 7, 2017, 297.
Shiao, H.Ž.A., Chua, D., Lin, H., Slane, S., Salomon, M., Low temperature electrolytes for Li-ion PVDF cells. J. Power Sources 87 (2000), 167–173.
Pyo, S.H., Park, J.H., Chang, T.S., Hatti-Kaul, R., Dimethyl carbonate as a green chemical. Curr. Opin. Green Sustain. Chem. 5 (2017), 61–66.
Wu, X.L., Meng, Y.Z., Xiao, M., Lu, Y.X., Direct synthesis of dimethyl carbonate (DMC) using Cu-Ni/VSO as catalyst. J. Mol. Catal. A Chem. 249 (2006), 93–97.
Jiang, C., et al. Synthesis of dimethyl carbonate from methanol and carbon dioxide in the presence of polyoxometalates under mild conditions. Appl. Catal. Gen. 256 (2003), 203–212.
Aresta, M., et al. Cerium(IV) oxide modification by inclusion of a hetero-atom: a strategy for producing efficient and robust nano-catalysts for methanol carboxylation. Catal. Today 137 (2008), 125–131.
Kumar, P., Kaur, R., Verma, S., Srivastava, V.C., Mishra, I.M., The preparation and efficacy of SrO/CeO2catalysts for the production of dimethyl carbonate by transesterification of ethylene carbonate. Fuel 220 (2018), 706–716.
Zheng, H., Hong, Y., Xu, J., Xue, B., Li, Y.X., Transesterification of ethylene carbonate to dimethyl carbonate catalyzed by CeO2 materials with various morphologies. Catal. Commun. 106 (2018), 6–10.
Gandara-Loe, J., Jacobo-Azuara, A., Silvestre-Albero, J., Sepúlveda-Escribano, A., Ramos-Fernández, E.V., Layered double hydroxides as base catalysts for the synthesis of dimethyl carbonate. Catal. Today 296 (2017), 254–261.
Du, G.F., et al. N-heterocyclic carbene catalyzed synthesis of dimethyl carbonate via transesterification of ethylene carbonate with methanol. J. Saudi Chem. Soc. 19 (2015), 112–115.
Hou, Z., et al. High-yield synthesis of dimethyl carbonate from the direct alcoholysis of urea in supercritical methanol. Chem. Eng. J. 236 (2014), 415–418.
Wu, X., et al. Synthesis of dimethyl carbonate by urea alcoholysis over Zn/Al bi-functional catalysts. Appl. Catal. Gen. 473 (2014), 13–20.
Ramesh, S., Devred, F., van den Biggelaar, L., Debecker, D.P., Hydrotalcites promoted by NaAlO2 as strongly basic catalysts with record activity in glycerol carbonate synthesis. ChemCatChem 10 (2018), 1398–1405.
Christy, S., Noschese, A., Lomelí-Rodriguez, M., Greeves, N., Lopez-Sanchez, J.A., Recent progress in the synthesis and applications of glycerol carbonate. Curr. Opin. Green Sustain. Chem. 14 (2018), 99–107.
Zhu, T., Li, Z., Luo, Y., Yu, P., Pervaporation separation of dimethyl carbonate/methanol azeotrope through cross-linked PVA-poly (vinyl pyrrolidone)/PAN composite membranes. Desalin. Water Treat. 51 (2013), 5485–5493.
Kreis, P., Górak, A., Process analysis of hybrid separation processes: combination of distillation and pervaporation. Chem. Eng. Res. Des. 84 (2006), 595–600.
Li, W., et al. Application of pervaporation in the bio-production of glycerol carbonate. Chem. Eng. Process. - Process Intensif., 2018, 10.1016/j.cep.2018.08.014.
Li, W., et al. Sorption and pervaporation study of methanol/dimethyl carbonate mixture with poly(etheretherketone) (PEEK-WC) membrane. J. Membr. Sci. 567 (2018), 303–310.
Lozano, L.J., et al. Recent advances in supported ionic liquid membrane technology. J. Membr. Sci. 376 (2011), 1–14.
Bartsch, R.A., Way, J.D., Galier, S., Savignac, J., Roux-de Balmann, H., Chemical separations with liquid membranes: an overview. ACS Symp. Ser. 642 (1996), 1–8.
Kazemi, P., Peydayesh, M., Bandegi, A., Mohammadi, T., Bakhtiari, O., Stability and extraction study of phenolic wastewater treatment by supported liquid membrane using tributyl phosphate and sesame oil as liquid membrane. Chem. Eng. Res. Des. 92 (2014), 375–383.
Teramoto, M., et al. An attempt for the stabilization of supported liquid membrane. Separ. Purif. Technol. 21 (2000), 137–144.
Van De Voorde, I., Pinoy, L., De Ketelaere, R.F., Recovery of nickel ions by supported liquid membrane (SLM) extraction. J. Membr. Sci. 234 (2004), 11–21.
Takeuchi, H., Takahashi, K., Goto, W., Some observations liquid membranes on the stability of supported. J. Membr. Sci. 34 (1987), 19–31.
Sasikumar, B., Arthanareeswaran, G., Ismail, A.F., Recent progress in ionic liquid membranes for gas separation. J. Mol. Liq. 266 (2018), 330–341.
Flieger, J., Grushka, E.B., Czajkowska, C.-Z., Żelazko, A., Ionic liquids as solvents in separation processes. Austin J. Anal. Pharm. Chem., 1, 2014 1009–2.
Plechkova, N.V., Seddon, K.R., Applications of ionic liquids in the chemical industry. Chem. Soc. Rev. 37 (2008), 123–150.
Brennecke, J.F., Maginn, E.J., Ionic liquids: innovative fluids for chemical processing. AIChE J. 47 (2001), 2384–2389.
Hubbard, C.D., Illner, P., Van Eldik, R., Understanding chemical reaction mechanisms in ionic liquids: successes and challenges. Chem. Soc. Rev. 40 (2011), 272–290.
Toral, A.R., et al. Cross-linked Candida Antarctica lipase B is active in denaturing ionic liquids. Enzym. Microb. Technol. 40 (2007), 1095–1099.
Hallett, J.P., Welton, T., Room-temperature ionic liquids: solvents for synthesis and catalysis. 2. Chem. Rev. 111 (2011), 3508–3576.
Dietz, M.L., Ionic liquids as extraction solvents: where do we stand?. Separ. Sci. Technol. 41 (2006), 2047–2063.
Ventura, S.P.M., et al. Ionic-liquid-mediated extraction and separation processes for bioactive compounds: past, present, and future trends. Chem. Rev. 117 (2017), 6984–7052.
Menne, S., Pires, J., Anouti, M., Balducci, A., Protic ionic liquids as electrolytes for lithium-ion batteries. Electrochem. Commun. 31 (2013), 39–41.
Moreno, M., et al. Ionic liquid electrolytes for safer lithium batteries. J. Electrochem. Soc. 164 (2017), A6026–A6031.
Ding, J., et al. Use of ionic liquids as electrolytes in electromechanical actuator systems based on inherently conducting polymers. Chem. Mater. 15 (2003), 2392–2398.
MacFarlane, D.R., et al. Energy applications of ionic liquids. Energy Environ. Sci. 7 (2014), 1–468.
Abai, M., et al. An ionic liquid process for mercury removal from natural gas. Dalton Trans. 44 (2015), 8617–8624.
Anderson, K., et al. Carbon dioxide uptake from natural gas by binary ionic liquid–water mixtures. Green Chem. 17 (2015), 4340–4354.
Blanchard, L.A., Hancu, D., Green processing using ionic liquids and CO2. Nature 399 (1999), 28–29.
Wang, J., et al. Recent development of ionic liquid membranes. Green Energy Environ 1 (2016), 43–61.
Karkhanechi, H., Salmani, S., Asghari, M., A review on gas separation applications of supported ionic liquid membranes. ChemBioEng Rev 2 (2015), 290–302.
Liu, Z., Liu, C., Li, L., Qin, W., Xu, A., CO2 separation by supported ionic liquid membranes and prediction of separation performance. Int. J. Greenh. Gas Control 53 (2016), 79–84.
Cserjési, P., Nemestóthy, N., Bélafi-Bakó, K., Gas separation properties of supported liquid membranes prepared with unconventional ionic liquids. J. Membr. Sci. 349 (2010), 6–11.
Althuluth, M., et al. Natural gas purification using supported ionic liquid membrane. J. Membr. Sci. 484 (2015), 80–86.
Zhang, X., et al. Selective separation of H2S and CO2 from CH4 by supported ionic liquid membranes. J. Membr. Sci. 543 (2017), 282–287.
Jiang, Y.-Y., et al. SO2 gas separation using supported ionic liquid membranes. J. Phys. Chem. B 111 (2007), 5058–5061.
Ilyas, A., et al. Supported protic ionic liquid membrane based on 3-(trimethoxysilyl)propan-1-aminium acetate for the highly selective separation of CO2. J. Membr. Sci. 543 (2017), 301–309.
Hernández-Fernández, F.J., et al. A novel application of supported liquid membranes based on ionic liquids to the selective simultaneous separation of the substrates and products of a transesterification reaction. J. Membr. Sci. 293 (2007), 73–80.
Zhang, F., Sun, W., Liu, J., Zhang, W., Ren, Z., Extraction separation of toluene/cyclohexane with hollow fiber supported ionic liquid membrane. Korean J. Chem. Eng. 31 (2014), 1049–1056.
de los Ríos, A.P., Hernández-Fernández, F.J., Rubio, M., Gómez, D., Víllora, G., Highly selective transport of transesterification reaction compounds through supported liquid membranes containing ionic liquids based on the tetrafluoroborate anion. Desalination 250 (2010), 101–104.
Hernández-Fernández, F.J., de los Ríos, A.P., Tomás-Alonso, F., Gómez, D., Víllora, G., Improvement in the separation efficiency of transesterification reaction compounds by the use of supported ionic liquid membranes based on the dicyanamide anion. Desalination 244 (2009), 122–129.
Hernández-Fernández, F.J., et al. Integrated reaction/separation processes for the kinetic resolution of rac-1-phenylethanol using supported liquid membranes based on ionic liquids. Chem. Eng. Process. Process Intensif. 46 (2007), 818–824.
de los Ríos, A.P., et al. On the importance of the nature of the ionic liquids in the selective simultaneous separation of the substrates and products of a transesterification reaction through supported ionic liquid membranes. J. Membr. Sci. 307 (2008), 233–238.
Izák, P., Ruth, W., Fei, Z., Dyson, P.J., Kragl, U., Selective removal of acetone and butan-1-ol from water with supported ionic liquid-polydimethylsiloxane membrane by pervaporation. Chem. Eng. J. 139 (2008), 318–321.
Izák, P., Köckerling, M., Kragl, U., Solute transport from aqueous mixture throught supported ionic liquid membrane by pervaporation. Desalination 199 (2006), 96–98.
Matsumoto, M., Inomoto, Y., Kondo, K., Selective separation of aromatic hydrocarbons through supported liquid membranes based on ionic liquids. J. Membr. Sci. 246 (2005), 77–81.
de los Ríos, A.P., et al. Prediction of the selectivity in the recovery of transesterification reaction products using supported liquid membranes based on ionic liquids. J. Membr. Sci. 307 (2008), 225–232.
Zhang, Z., et al. Separation of methanol dimethyl carbonate azeotropic mixture using ionic liquids as entrainers. Fluid Phase Equilib. 435 (2017), 98–103.
Papaiconomou, N., Billard, I., Chainet, E., Extraction of iridium(iv) from aqueous solutions using hydrophilic/hydrophobic ionic liquids. RSC Adv. 4 (2014), 48260–48266.
Di Francesco, F., et al. Water sorption by anhydrous ionic liquids. Green Chem. 13 (2011), 1712–1717.
Apperley, D.C., et al. Speciation of chloroindate(iii) ionic liquids. Dalton Trans. 39 (2010), 8679–8687.
Scheuermeyer, M., et al. Thermally stable bis(trifluoromethylsulfonyl)imide salts and their mixtures. New J. Chem. 40 (2016), 7157–7161.
Wu, Q.-Y., Chen, X.-N., Wan, L.-S., Xu, Z.-K., Interactions between polyacrylonitrile and solvents: density functional theory study and two-dimensional infrared correlation analysis. J. Phys. Chem. B 116 (2012), 8321–8330.
Shmakov, V.S., et al. Negative-ion mass spectra of the synthetic alkaloid diptocarpilidine and its deoxy precursor. Chem. Nat. Compd. 28 (1993), 474–476.
Wang, H., Lu, P., Liquid − liquid equilibria for the system dimethyl carbonate + methanol + glycerol in the temperature range of (303.15 to 333.15) K. J. Chem. Eng. Data 57 (2012), 582–589.
Esteban, J., Ladero, M., Molinero, L., García-ochoa, F., Liquid – liquid equilibria for the ternary systems DMC – methanol – glycerol, DMC – glycerol carbonate – glycerol and the quaternary system DMC – methanol – glycerol carbonate – glycerol at catalytic reacting temperatures. Chem. Eng. Res. Des. 92 (2014), 2797–2805.
Baker, R.W., Wijmans, J.G., Huang, Y., Permeability, permeance and selectivity: a preferred way of reporting pervaporation performance data. J. Membr. Sci. 348 (2010), 346–352.
De Juan, A., Fonrodona, G., Casassas, E., Solvent classification based on solvatochromic parameters: a comparison with the Snyder approach. TrAC Trends Anal. Chem. (Reference Ed.) 16 (1997), 52–62.
Drioli, E., Zhan, S., Basileb, A., On the coupling effect in pervaporation. J. Membr. Sci. 81 (1993), 43–55.
Ab Rani, M.A., et al. Understanding the polarity of ionic liquids. Phys. Chem. Chem. Phys. 13 (2011), 16831–16840.
Khupse, N.D., Kumar, A., Contrasting thermosolvatochromic trends in pyridinium-, pyrrolidinium-, and phosphonium-based ionic liquids. J. Phys. Chem. B 114 (2010), 376–381.
García, J.I., García-marín, H., Pires, E., Glycerol based solvents: synthesis, properties and applications. Green Chem. 12 (2010), 426–434.
Crowhurst, L., Falcone, R., Lancaster, N.L., Llopis-Mestre, V., Welton, T., Using Kamlet-Taft solvent descriptors to explain the reactivity of anionic nucleophiles in ionic liquids. J. Org. Chem. 71 (2006), 8847–8853.
Kamlet, M.J., Abboud, J.-L.M., Abraham, M.H., Taft, R.W., Linear solvation energy relationships. 23. A comprehensive collection of the solvatochromic parameters,.pi.*,.alpha., and.beta., and some methods for simplifying the generalized solvatochromic equation Solvatochromic Equation. J. Org. Chem. 48 (1983), 2877–2887.
Laurence, C., Nicolet, P., Dalati, M.T., Abboud, J.-L.M., Notario, R., The empirical treatment of solvent-solute interactions: 15 Years of.pi.*. J. Phys. Chem. 98 (1994), 5807–5816.
Li, W., Luis, P., Understanding coupling effects in pervaporation of multi-component mixtures. Separ. Purif. Technol. 197 (2018), 95–106.
Lee, S.H., Lee, S.B., The Hildebrand solubility parameters, cohesive energy densities and internal energies of 1-alkyl-3-methylimidazolium-based room temperature ionic liquids. Chem. Commun., 2005, 3469–3471, 10.1039/b503740a.
Schröder, B., Coutinho, J.A.P., Predicting enthalpies of vaporization of aprotic ionic liquids with COSMO-RS. Fluid Phase Equilib. 370 (2014), 24–33.
Marcus, Y., Room temperature ionic liquids: their cohesive energies, solubility parameters and solubilities in them. J. Solut. Chem. 46 (2017), 1778–1791.
Barton, A.E.M., Handbook of Solubility Parameters and Other Cohesion Parameters. second ed., 1991, CRC Press.
Hendricks, S.B., Wulf, O.R., Liddel, U., Hydrogen bond formation between hydroxyl groups and nitrogen atoms in some organic compounds. J. Am. Chem. Soc. 58 (1936), 548–555.
Chen, J.H., Liu, Q.L., Fang, J., Zhu, A.M., Zhang, Q.G., Composite hybrid membrane of chitosan-silica in pervaporation separation of MeOH/DMC mixtures. J. Colloid Interface Sci. 316 (2007), 580–588.
Wang, L., Li, J., Lin, Y., Chen, C., Crosslinked poly(vinyl alcohol) membranes for separation of dimethyl carbonate/methanol mixtures by pervaporation. Chem. Eng. J. 146 (2009), 71–78.
Wang, L., Han, X., Li, J., Zhan, X., Chen, J., Hydrophobic nano-silica/polydimethylsiloxane membrane for dimethylcarbonate-methanol separation via pervaporation. Chem. Eng. J. 171 (2011), 1035–1044.
Chen, J.H., Liu, Q.L., Zhu, A.M., Zhang, Q.G., Fang, J., Pervaporation separation of MeOH/DMC mixtures using STA/CS hybrid membranes. J. Membr. Sci. 315 (2008), 74–81.
Xiao, T., et al. Preparation of asymmetric chitosan hollow fiber membrane and its pervaporation performance for dimethyl carbonate/methanol mixtures. J. Appiled Polym. Sci. 115 (2010), 2875–2882.
Wang, L., Li, J., Lin, Y., Chen, C., Separation of dimethyl carbonate/methanol mixtures by pervaporation with poly (acrylic acid)/poly (vinyl alcohol) blend membranes. J. Membr. Sci. 305 (2007), 238–246.
Won, W., Feng, X., Lawless, D., Separation of dimethyl carbonate/methanol/water mixtures by pervaporation using crosslinked chitosan membranes. Separ. Purif. Technol. 31 (2003), 129–140.
Zhou, H., Lv, L., Liu, G., Jin, W., Xing, W., PDMS/PVDF composite pervaporation membrane for the separation of dimethyl carbonate from a methanol solution. J. Membr. Sci. 471 (2014), 47–55.