Adaptive plasticity; Growth compensation; Life cycles; Life-history; Metamorphosis; Complex life cycle; Body size; Compensatory growth; Survival; Locomotor performance; Jumping; Gape size; Payoffs; Cost; Development; Alternative phenotypes; Amphibians; Anurans; Horned frog; Ceratophryidae; Ceratophrys stolzmanni
Abstract :
[en] Background: In species with complex life cycles, size at metamorphosis is a key life-history trait which reflects the complex interactions between costs and benefits of life in the aquatic and terrestrial environments. Whereas the effects of a deteriorating larval habitat (e.g. pond desiccation) on triggering an early metamorphosis have been extensively investigated in amphibians, the consequences of the resulting reduced size at metamorphosis on fitness in the post-metamorphic terrestrial stage remain poorly understood. We tested the hypothesis that a smaller size at metamorphosis negatively affects performance and survival in the ensuing terrestrial stage. Using as model a tropical amphibian (Ceratophrys stolzmanni) showing a large phenotypic plasticity in metamorphosing traits, we evaluated the effects of size at metamorphosis on fitness-related trophic and locomotor performance traits, as well as on growth and survival rates.
Results: Our results support the hypothesis that a larger size at metamorphosis is correlated with better survival and performance. The survival rate of large metamorphosing individuals was 95%, compared to 60% for those completing metamorphosis at a small size. Locomotor performance and gape size were positively correlated with body size, larger animals being more mobile and capable to ingest larger prey. However, smaller individuals achieved higher growth rates, thus reducing the size gap.
Conclusions: Overall, size at metamorphosis affected profoundly the chances of survival in the short term, but smaller surviving individuals partly compensated their initial disadvantages by increasing growth rates.
Research Center/Unit :
FOCUS - Freshwater and OCeanic science Unit of reSearch - ULiège
Disciplines :
Zoology Environmental sciences & ecology
Author, co-author :
Székely, Diana ; Université de Liège - ULiège & Universidad Técnica Particular de Loja
Cogalniceanu, Dan; Ovidius University Constanța
Székely, Paul; Universidad Técnica Particular de Loja
Armijos-Ojeda, Diego; Universidad Técnica Particular de Loja
Espinosa-Mogrovejo, Valentina; Universidad Técnica Particular de Loja
Denoël, Mathieu ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Laboratoire d'Écologie et de Conservation des Amphibiens
Language :
English
Title :
How to recover from a bad start: size at metamorphosis affects growth and survival in a tropical amphibian
Publication date :
April 2020
Journal title :
BMC Ecology
eISSN :
1472-6785
Publisher :
BioMed Central, United Kingdom
Volume :
20
Pages :
24
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique WBI - Wallonie-Bruxelles International UTPL - Universidad Técnica Particular de Loja
Funding text :
DSz benefited from a research Grant from Universidad Técnica Particular de Loja (Convocatoria Estancias Cortas de Investigacion 2019). The collaboration between Ovidius University Constanța and University of Liège was supported by Wallonie-Bruxelles International (W.B.I.) and CCCDI-UEFISCDI (A.N.C.S.: Autoritatea Nationala pentru Cercetare Stiintifica)–project no. 105 BM/2017.
MD is a Research Director at Fonds de la Recherche Scientifique–FNRS
(Belgium).
Wilbur HM. Complex life cycles. Annu Rev Ecol Syst. 1980;11:67-93. http://doi.org/10.1146/annurev.es.11.110180.000435.
Laudet V. The origins and evolution of vertebrate metamorphosis. Curr Biol. 2011;21:726-37. http://doi.org/10.1016/j.cub.2011.07.030.
Rowe L, Ludwig D. Size and timing of metamorphosis in complex life cycles: time constraints and variation. Ecology. 1991;72:413-27. http://doi.org/10.2307/2937184.
Hardy NB, Peterson DA, Dohlen CD. The evolution of life cycle complexity in aphids: ecological optimization or historical constraint? Evolution. 2015;69:1423-32. http://doi.org/10.1111/evo.12643.
Tomašević Kolarov N, Cvijanović M, Denoël M, Ivanović A. Morphological integration and alternative life history strategies: a case study in a facultatively paedomorphic newt. J Exp Zool B Mol Dev Evol. 2017;328:737-48. http://doi.org/10.1002/jez.b.22758.
Morey S, Reznick D. Effects of larval density on postmetamorphic spadefoot toads (Spea hammondii). Ecology. 2001;82:510-22. http://doi.org/10.1890/0012-9658(2001)082%5b0510:EOLDOP%5d2.0.CO;2.
Crespi EJ, Warne RW. Environmental conditions experienced during the tadpole stage alter post-metamorphic glucocorticoid response to stress in an amphibian. Integr Comp Biol. 2013;53:989-1001. http://doi.org/10.1093/icb/ict087.
Yagi KT, Green DM. Mechanisms of density-dependent growth and survival in tadpoles of Fowler's toad, Anaxyrus fowleri: volume vs. abundance. Copeia. 2016;104:942-51. http://doi.org/10.1643/CE-16-438.
Székely P, Tudor M, Cogǎlniceanu D. Effect of habitat drying on the development of the Eastern spadefoot toad (Pelobates syriacus) tadpoles. Amphibia-Reptilia. 2010;31:425-34. http://doi.org/10.1163/156853810791769536.
Skelly DK, Werner EE. Behavioral and life-historical responses of larval American toads to an odonate predator. Ecology. 1990;71:2313-22. http://doi.org/10.2307/1938642.
Van Buskirk J, Saxer G. Delayed costs of an induced defense in tadpoles? Morphology, hopping, and development rate at metamorphosis. Evolution. 2001;55:821-9. http://doi.org/10.1111/j.0014-3820.2001.tb00817.x.
Beck CW, Congdon JD. Effects of age and size at metamorphosis on performance and metabolic rates of southern toad, Bufo terrestris, metamorphs. Funct Ecol. 2000;14:32-8. http://doi.org/10.1046/j.1365-2435.2000.00386.x.
John-Alder HB, Morin PJ. Effects of larval density on jumping ability and stamina in newly metamorphosed Bufo woodhousii fowleri. Copeia. 1990;1990:856-60. http://www.jstor.org/stable/1446453.
Child T, Phillips BL, Brown GP, Shine R. The spatial ecology of cane toads (Bufo marinus) in tropical Australia: why do metamorph toads stay near the water? Austral Ecol. 2008;33:630-40. http://doi.org/10.1111/j.1442-9993.2007.01829.x.
Cabrera-Guzmán E, Crossland MR, Brown GP, Shine R. Larger body size at metamorphosis enhances survival, growth and performance of young cane toads (Rhinella marina). PLoS ONE. 2013;8:e70121. http://doi.org/10.1371/journal.pone.0070121.
Chelgren ND, Rosenberg DK, Heppell SS, Gitelman AI. Carryover aquatic effects on survival of metamorphic frogs during pond emigration. Ecol Appl. 2006;16:250-61. http://doi.org/10.1890/04-0329.
Werner EE. Amphibian metamorphosis: growth rate, predation risk, and the optimal size at transformation. Am Nat. 1986;128:319-41. http://doi.org/10.1086/284565.
Earl JE, Whiteman HH. Are commonly used fitness predictors accurate? A meta-analysis of amphibian size and age at metamorphosis. Copeia. 2015;103:297-309. http://doi.org/10.1643/CH-14-128.
Boone MD. Juvenile frogs compensate for small metamorph size with terrestrial growth: overcoming the effects of larval density and insecticide exposure. J Herpetol. 2005;39:416-23. http://doi.org/10.1670/187-04A.1.
Schmidt BR, Hödl W, Schaub M. From metamorphosis to maturity in complex life cycles: equal performance of different juvenile life history pathways. Ecology. 2012;93:657-67. http://doi.org/10.1890/11-0892.1.
Gómez-Mestre I, Saccoccio VL, Iijima T, Collins EM, Rosenthal GG, Warkentin KM. The shape of things to come: linking developmental plasticity to post-metamorphic morphology in anurans. J Evol Biol. 2010;23:1364-73. http://doi.org/10.1111/j.1420-9101.2010.02016.x.
Charbonnier JF, Vonesh JR. Consequences of life history switch point plasticity for juvenile morphology and locomotion in the Túngara frog. PeerJ. 2015;3:e1268. http://doi.org/10.7717/peerj.1268.
Ficetola FG, de Bernardi F. Trade-off between larval development rate and post-metamorphic traits in the frog Rana latastei. Evol Ecol. 2006;20:143-58. http://doi.org/10.1007/s10682-005-5508-6.
Walton M. Relationships among metabolic, locomotory, and field measures of organismal performance in the Fowler's toad (Bufo woodhousei fowleri). Physiol Zool. 1988;61:107-18. http://doi.org/10.1086/physzool.61.2.30156141.
Wassersug RJ, Sperry DG. The relationships of locomotion to differential predation on Pseudacris triseriata (Anura: Hylidae). Ecology. 1977;58:830-9. http://doi.org/10.2307/1936218.
Phillips BL, Brown GP, Webb JK, Shine R. Invasion and the evolution of speed in toads. Nature. 2006;439:803. http://doi.org/10.1038/439803a.
Emerson SB. Skull shape in frogs: correlations with diet. Herpetologica. 1985;41:177-88.
Denoël M. Feeding performance in heterochronic alpine newts is consistent with trophic niche and maintenance of polymorphism. Ethology. 2004;110:127-36. http://doi.org/10.1111/j.1439-0310.2003.00958.x.
Székely D, Denoël M, Székely P, Cogǎlniceanu D. Pond drying cues and their effects on growth and metamorphosis in a fast developing amphibian. J Zool. 2017;303:129-35. http://doi.org/10.1111/jzo.12468.
Grözinger F, Thein J, Feldhaar H, Rödel M-O. Giants, dwarfs and the environment - metamorphic trait plasticity in the common frog. PLoS ONE. 2014;9:e89982. http://doi.org/10.1371/journal.pone.0089982.
Altwegg R, Reyer HU. Patterns of natural selection on size at metamorphosis in water frogs. Evolution. 2003;57:872-82. http://doi.org/10.1111/j.0014-3820.2003.tb00298.x.
Rudolf VHW, Rödel MO. Phenotypic plasticity and optimal timing of metamorphosis under uncertain time constraints. Evol Ecol. 2007;21:121-42. http://doi.org/10.1007/s10682-006-0017-9.
Ward-Fear G, Brown GP, Shine R. Factors affecting the vulnerability of cane toads (Bufo marinus) to predation by ants. Biol J Linn Soc. 2010;99:738-51. http://doi.org/10.1111/j.1095-8312.2010.01395.x.
Smith DC. Adult recruitment in chorus frogs: effects of size and date at metamorphosis. Ecology. 1987;68:344-50. http://doi.org/10.2307/1939265.
Bredeweg EM, Urbina J, Morzillo AT, Garcia TS. Starting on the right foot: carryover effects of larval hydroperiod and terrain moisture on post-metamorphic frog movement behavior. Front Ecol Evol. 2019;7:97. http://doi.org/10.3389/fevo.2019.00097.
Hector KL, Nakagawa S. Quantitative analysis of compensatory and catch-up growth in diverse taxa. J Anim Ecol. 2012;81:583-93. http://doi.org/10.1111/j.1365-2656.2011.01942.x.
Tarvin RD, Silva Bermúdez C, Briggs VS, Warkentin KM. Carry-over effects of size at metamorphosis in red-eyed treefrogs: higher survival but slower growth of larger metamorphs. Biotropica. 2015;47:218-26. http://doi.org/10.1111/btp.12198.
Buhaciuc E, Székely P, Bǎncilǎ R, Cogǎlniceanu D. Food availability influences postmetamorphic growth in two spadefoot toad species (genus Pelobates). Amphib Reptil. 2017;38:41-8. http://doi.org/10.1163/15685381-00003082.
Arendt JD, Wilson DS. Population differences in the onset of cranial ossification in pumpkinseed (Lepomis gibbosus), a potential cost of rapid growth. Can J Fish Aquat Sci. 2000;57:351-6. http://doi.org/10.1139/f99-250.
Gervasi SS, Foufopoulos J. Costs of plasticity: responses to desiccation decrease post-metamorphic immune function in a pond-breeding amphibian. Funct Ecol. 2008;22:100-8. http://doi.org/10.1111/j.1365-2435.2007.01340.x.
Burraco P, Díaz-Paniagua C, Gomez-Mestre I. Different effects of accelerated development and enhanced growth on oxidative stress and telomere shortening in amphibian larvae. Sci Rep. 2017;7:7494. http://doi.org/10.1038/s41598-017-07201-z.
Audo MC, Mann TM, Polk TL, Loudenslager CM, Diehl WJ, Altig R. Food deprivation during different periods of tadpole (Hyla chrysoscelis) ontogeny affects metamorphic performance differently. Oecologia. 1995;103:518-22. http://doi.org/10.1007/BF00328691.
Walsh PT, Downie JR, Monaghan P. Temperature-mediated morphology changes during metamorphic climax in the African clawed frog, Xenopus laevis. J Therm Biol. 2008;33:244-9. http://doi.org/10.1016/j.jtherbio.2008.02.002.
Laurila A. Competitive ability and the coexistence of anuran larvae in freshwater rock-pools. Freshwater Biol. 2000;43:161-74.
Davenport JM, Hossack BR, Lowe WH. Partitioning the non-consumptive effects of predators on prey with complex life histories. Oecologia. 2014;176:149-55. http://doi.org/10.1007/s00442-014-2996-5.
Richter-Boix A, Tejedo M, Rezende EL. Evolution and plasticity of anuran larval development in response to desiccation. A comparative analysis. Ecol Evol. 2011;1:15-25. http://doi.org/10.1002/ece3.2.
Benard MF, Middlemis Maher J. Consequences of intraspecific niche variation: phenotypic similarity increases competition among recently metamorphosed frogs. Oecologia. 2011;166:585-92. http://doi.org/10.1007/s00442-010-1896-6.
Tejedo M, Marangoni F, Pertoldi C, Richter-Boix A, Laurila A, Orizaola G, Nicieza AG, Álvarez D, Gomez-Mestre I. Contrasting effects of environmental factors during larval stage on morphological plasticity in post-metamorphic frogs. Clim Res. 2010;43(1):31-9. http://doi.org/10.3354/cr00878.
Blouin SM, Brown TS. Effects of temperature-induced variation in anuran larval growth rate on head width and leg length at metamorphosis. Oecologia. 2000;125:358-61. http://doi.org/10.1007/s004420000458.
Gómez-Mestre I, Buchholz DR. Developmental plasticity mirrors differences among taxa in spadefoot toads linking plasticity and diversity. PNAS. 2006;103:19021-6. http://doi.org/10.1073/pnas.0603562103.
Tejedo M, Semlitsch RD, Hotz H. Differential morphology and jumping performance of newly metamorphosed frogs of the hybridogenetic Rana esculenta complex. J Herpetol. 2000;34:201-10. http://doi.org/10.2307/1565416.
Székely D, Cogǎlniceanu D, Székely P, Denoël M. Dryness affects burrowing depth in a semi-fossorial amphibian. J Arid Environ. 2018;155:79-81. http://doi.org/10.1016/j.jaridenv.2018.02.003.
Emerson SB. Allometry and jumping in frogs: helping the twain to meet. Evolution. 1978;32:551-64. http://doi.org/10.1111/j.1558-5646.1978.tb04598.x.
Hirai T. Ontogenetic change in the diet of the pond frog, Rana nigromaculata. Ecol Res. 2002;17:639-44. http://doi.org/10.1046/j.1440-1703.2002.00521.x.
Fabrezi M, Quinzio SI, Goldberg J, Cruz JC, Pereyra MC, Wassersug RJ. Developmental changes and novelties in ceratophryid frogs. EvoDevo. 2016;7:1-16. http://doi.org/10.1186/s13227-016-0043-9.
Székely D, Gaona FP, Székely P, Cogǎlniceanu D. What does a Pacman eat? Macrophagy and necrophagy in a generalist predator (Ceratophrys stolzmanni). PeerJ. 2019;7:e6406. http://doi.org/10.7717/peerj.6406.
Pizzatto L, Shine R. The behavioral ecology of cannibalism in cane toads (Bufo marinus). Behav Ecol Sociobiol. 2008;63:123-33. http://doi.org/10.1007/s00265-008-0642-0.
Gosner KL. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica. 1960;16:183-90.
Székely D, Székely P, Denoël M, Cogǎlniceanu D. Random size-assortative mating despite size-dependent fecundity in a Neotropical amphibian with explosive reproduction. Ethology. 2018;124:218-26. http://doi.org/10.1111/eth.12724.
Buckley CR, Michael SF, Irschick DJ. Early hatching decreases jumping performance in a direct-developing frog, Eleutherodactylus coqui. Funct Ecol. 2005;19:67-72.
Rebelo AD, Measey J. Locomotor performance constrained by morphology and habitat in a diverse clade of African frogs (Anura: Pyxicephalidae). Biol J Linn Soc. 2019;127:310-23. http://doi.org/10.1093/biolinnean/blz007.
Hourdry J, l'Hermite A, Ferrand R. Changes in the digestive tract and feeding behavior of anuran amphibians during metamorphosis. Physiol Zool. 1996;69:219-51.
Bǎncilǎ RI, Hartel T, Plǎiaşu R, Smets J, Cogǎlniceanu D. Comparing three body condition indices in amphibians: a case study of yellow-bellied toad Bombina variegata. Amphib Reptil. 2010;31:558-62. http://doi.org/10.1163/017353710X518405.
Denoël M, Hervant F, Schabetsberger R, Joly P. Short- and long-term advantages of an alternative ontogenetic pathway. Biol J Linn Soc. 2002;77:105-12. http://doi.org/10.1046/j.1095-8312.2002.00095.x.
Zug GR. Anuran locomotion: structure and function. I. Preliminary observations on relation between jumping and osteometrics of appendicular and postaxial skeleton. Copeia. 1972;1972:613-24. http://doi.org/10.2307/1442720.