Ostrom Q. T. Gittleman H. Truitt G. et al. CBTRUS Statistical Report: Primary brain and other central nervous system tumors diagnosed in the United States in 2011-2015. Neuro Oncol: 2018; 20 iv1 iv86
Ezzat S. Asa S. L. Couldwell W. T. et al. The prevalence of pituitary adenomas: a systematic review. Cancer: 2004; 101 613 619
Daly A. F. Rixhon M. Adam C. et al. High prevalence of pituitary adenomas: A cross-sectional study in the province of Liege, Belgium. J Clin Endocrinol Metab: 2006; 91 4769 4775
Fontana E. Gaillard R. Epidemiology of pituitary adenoma: Results of the first Swiss study. Rev Med Suisse: 2009; 5 2172 2174
Fernandez A. Karavitaki N. Wass J. A. Prevalence of pituitary adenomas: A community-based, cross-sectional study in Banbury (Oxfordshire, UK). Clin Endocrinol (Oxf): 2010; 72 377 382
Gruppetta M. Mercieca C. Vassallo J. Prevalence and incidence of pituitary adenomas: A population based study in Malta. Pituitary: 2013; 16 545 553
Herman V. Fagin J. Gonsky R. et al. Clonal origin of pituitary adenomas. J Clin Endocrinol Metab: 1990; 71 1427 1433
Daly A. F. Tichomirowa M. A. Beckers A. The epidemiology and genetics of pituitary adenomas. Best Pract Res Clin Endocrinol Metab: 2009; 23 543 554
Landis C. A. Masters S. B. Spada A. et al. GTPase inhibiting mutations activate the alpha chain of Gs and stimulate adenylyl cyclase in human pituitary tumours. Nature: 1989; 340 692 696
Xekouki P. Azevedo M. Stratakis C. A. Anterior pituitary adenomas: Inherited syndromes, novel genes and molecular pathways. Expert Rev Endocrinol Metab: 2010; 5 697 709
Taboada G. F. Tabet A. L. Naves L. A. et al. Prevalence of gsp oncogene in somatotropinomas and clinically non-functioning pituitary adenomas: Our experience. Pituitary: 2009; 12 165 169
Riminucci M. Collins M. T. Lala R. et al. An R201H activating mutation of the GNAS1 (Gsalpha) gene in a corticotroph pituitary adenoma. Mol Pathol: 2002; 55 58 60
Spada A. Arosio M. Bochicchio D. et al. Clinical, biochemical, and morphological correlates in patients bearing growth hormone-secreting pituitary tumors with or without constitutively active adenylyl cyclase. J Clin Endocrinol Metab: 1990; 71 1421 1426
Picard C. Silvy M. Gerard C. et al. Gs alpha overexpression and loss of Gs alpha imprinting in human somatotroph adenomas: Association with tumor size and response to pharmacologic treatment. Int J Cancer: 2007; 121 1245 1252
McCune D. J. Osteita fibrosa cystica: the case of nine-year-old girl who also exhibits precocious puberty, multiple pigmentation of the skin and hyperthyroidism. Am J Dis. Children: 1936; 52 743 744
Vasilev V. Daly A. F. Thiry A. et al. McCune-Albright syndrome: A detailed pathological and genetic analysis of disease effects in an adult patient. J Clin Endocrinol Metab: 2014; 99 E2029 E2038
Collins M. T. Singer F. R. Eugster E. McCune-Albright syndrome and the extraskeletal manifestations of fibrous dysplasia. Orphanet J Rare Dis: 2012; 7 (Suppl 1): S4
Mantovani G. Bondioni S. Lania A. G. et al. Parental origin of Gsalpha mutations in the McCune-Albright syndrome and in isolated endocrine tumors. J Clin Endocrinol Metab: 2004; 89 3007 3009
Ruggieri P. Sim F. H. Bond J. R. et al. Malignancies in fibrous dysplasia. Cancer: 1994; 73 1411 1424
Volkl T. M. Dorr H. G. McCune-Albright syndrome: Clinical picture and natural history in children and adolescents. J Pediatr Endocrinol Metab: 2006; 19 (Suppl 2) 551 559
Akintoye S. O. Kelly M. H. Brillante B. et al. Pegvisomant for the treatment of gsp-mediated growth hormone excess in patients with McCune-Albright syndrome. J Clin Endocrinol Metab: 2006; 91 2960 2966
Reincke M. Sbiera S. Hayakawa A. et al. Mutations in the deubiquitinase gene USP8 cause Cushing's disease. Nat Genet: 2015; 47 31 38
Reyes-Turcu F. E. Ventii K. H. Wilkinson K. D. Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu Rev Biochem: 2009; 78 363 397
Meijer I. M. Kerperien J. Sotoca A. M. et al. The Usp8 deubiquitination enzyme is post-translationally modified by tyrosine and serine phosphorylation. Cell Signal: 2013; 25 919 930
Faucz F. R. Tirosh A. Tatsi C. et al. Somatic USP8 gene mutations are a common cause of pediatric cushing disease. J Clin Endocrinol Metab: 2017; 102 2836 2843
Albani A. Theodoropoulou M. Reincke M. Genetics of Cushing's disease. Clin Endocrinol (Oxf): 2018; 88 3 12
Hayashi K. Inoshita N. Kawaguchi K. et al. The USP8 mutational status may predict drug susceptibility in corticotroph adenomas of Cushing's disease. Eur J Endocrinol: 2016; 174 213 226
Cohen M. Persky R. Stegemann R. et al. Germline USP8 mutation associated with pediatric Cushing disease and other clinical features: A new syndrome. J Clin Endocrinol Metab: 2019; 104 4676 4682
Hernandez-Ramirez L. C. Gam R. Valdes N. et al. Loss-of-function mutations in the CABLES1 gene are a novel cause of Cushing's disease. Endocr Relat Cancer: 2017; 24 379 392
Roussel-Gervais A. Couture C. Langlais D. et al. The Cables1 gene in glucocorticoid regulation of pituitary corticotrope growth and cushing disease. J Clin Endocrinol Metab: 2016; 101 513 522
Thakker R. V. Multiple endocrine neoplasia type 1 (MEN1) and type 4 (MEN4). Mol Cell Endocrinol: 2014; 386 2 15
Larsson C. Skogseid B. Oberg K. et al. Multiple endocrine neoplasia type 1 gene maps to chromosome 11 and is lost in insulinoma. Nature: 1988; 332 85 87
Chandrasekharappa S. C. Guru S. C. Manickam P. et al. Positional cloning of the gene for multiple endocrine neoplasia-type 1. Science: 1997; 276 404 407
Lemos M. C. Thakker R. V. Multiple endocrine neoplasia type 1 (MEN1): Analysis of 1336 mutations reported in the first decade following identification of the gene. Hum Mutat: 2008; 29 22 32
Falchetti A. Genetics of multiple endocrine neoplasia type 1 syndrome: What's new and what's old. [version 1; peer review: 3 approved]. F1000 Research 2017, 6 (F1000 Faculty Rev): 73
Falchetti A. Marini F. Luzi E. et al. Multiple endocrine neoplasms. Best Pract Res Clin Rheumatol: 2008; 22 149 163
Marini F. Falchetti A. Del Monte F. et al. Multiple endocrine neoplasia type 1. Orphanet J Rare Dis: 2006; 1 38
Syro L. V. Scheithauer B. W. Kovacs K. et al. Pituitary tumors in patients with MEN1 syndrome. Clinics (Sao Paulo): 2012; 67 01 43 48
Scheithauer B. W. Laws E. R. Kovacs K. et al. Pituitary adenomas of the multiple endocrine neoplasia type I syndrome. Semin Diagn Pathol: 1987; 4 205 211
Verges B. Boureille F. Goudet P. et al. Pituitary disease in MEN type 1 (MEN1): Data from the France-Belgium MEN1 multicenter study. J Clin Endocrinol Metab: 2002; 87 457 465
Kamilaris CD C. Faucz F. R. Voutetakis A. et al. Carney Complex. Exp Clin Endocrinol Diabetes: 2019; 127 156 164
Kirschner L. S. Carney J. A. Pack S. D. et al. Mutations of the gene encoding the protein kinase A type I-alpha regulatory subunit in patients with the Carney complex. Nat Genet: 2000; 26 89 92
Robinson-White A. Meoli E. Stergiopoulos S. et al. PRKAR1A Mutations and protein kinase A interactions with other signaling pathways in the adrenal cortex. J Clin Endocrinol Metab: 2006; 91 2380 2388
Stratakis C. A. Carney J. A. Lin J. P. et al. Carney complex, a familial multiple neoplasia and lentiginosis syndrome. Analysis of 11 kindreds and linkage to the short arm of chromosome 2. J Clin Invest: 1996; 97 699 705
Forlino A. Vetro A. Garavelli L. et al. PRKACB and Carney complex. N Engl J Med: 2014; 370 1065 1067
Boikos S. A. Stratakis C. A. Carney complex: The first 20 years. Curr Opin Oncol: 2007; 19 24 29
Kirschner L. S. PRKAR1A and the evolution of pituitary tumors. Mol Cell Endocrinol: 2010; 326 3 7
Pepe S. Korbonits M. Iacovazzo D. Germline and mosaic mutations causing pituitary tumours: Genetic and molecular aspects. J Endocrinol: 2019; 240 R21 R45
Bertherat J. Horvath A. Groussin L. et al. Mutations in regulatory subunit type 1A of cyclic adenosine 5'-monophosphate-dependent protein kinase (PRKAR1A): Phenotype analysis in 353 patients and 80 different genotypes. J Clin Endocrinol Metab: 2009; 94 2085 2091
Pellegata N. S. Quintanilla-Martinez L. Siggelkow H. et al. Germ-line mutations in p27Kip1 cause a multiple endocrine neoplasia syndrome in rats and humans. Proc Natl Acad Sci USA: 2006; 103 15558 15563
Alrezk R. Hannah-Shmouni F. Stratakis C. A. MEN4 and CDKN1B mutations: The latest of the MEN syndromes. Endocr Relat Cancer: 2017; 24 T195 T208
Frederiksen A. Rossing M. Hermann P. et al. Clinical Features of Multiple Endocrine Neoplasia Type 4-Novel pathogenic variant and review of published cases. J Clin Endocrinol Metab: 2019; 104 3637 3646
Lee M. Pellegata N. S. Multiple endocrine neoplasia type 4. Front Horm Res: 2013; 41 63 78
Agarwal S. K. Mateo C. M. Marx S. J. Rare germline mutations in cyclin-dependent kinase inhibitor genes in multiple endocrine neoplasia type 1 and related states. J Clin Endocrinol Metab: 2009; 94 1826 1834
Daly A. F. Jaffrain-Rea M. L. Ciccarelli A. et al. Clinical characterization of familial isolated pituitary adenomas. J Clin Endocrinol Metab: 2006; 91 3316 3323
Beckers A. Daly A. F. The clinical, pathological, and genetic features of familial isolated pituitary adenomas. Eur J Endocrinol: 2007; 157 371 382
Beckers A. Aaltonen L. A. Daly A. F. et al. Familial isolated pituitary adenomas (FIPA) and the pituitary adenoma predisposition due to mutations in the aryl hydrocarbon receptor interacting protein (AIP) gene. Endocr Rev: 2013; 34 239 277
Marques N. V. Kasuki L. Coelho M. C. et al. Frequency of familial pituitary adenoma syndromes among patients with functioning pituitary adenomas in a reference outpatient clinic. J Endocrinol Invest: 2017; 40 1381 1387
Vierimaa O. Georgitsi M. Lehtonen R. et al. Pituitary adenoma predisposition caused by germline mutations in the AIP gene. Science: 2006; 312 1228 1230
Daly A. F. Tichomirowa M. A. Petrossians P. et al. Clinical characteristics and therapeutic responses in patients with germ-line AIP mutations and pituitary adenomas: An International Collaborative Study. J Clin Endocrinol Metab: 2010; 95 E373 E383
Hernandez-Ramirez L. C. Gabrovska P. Denes J. et al. Landscape of familial isolated and young-onset pituitary adenomas: Prospective diagnosis in AIP mutation carriers. J Clin Endocrinol Metab: 2015; 100 E1242 E1254
Lecoq A. L. Kamenicky P. Guiochon-Mantel A. et al. Genetic mutations in sporadic pituitary adenomas-what to screen for? Nat Rev Endocrinol: 2015; 11 43 54
Beckers A. Petrossians P. Hanson J. Daly A. F. The causes and consequences of pituitary gigantism. Nat Rev Endocrinol: 2018; 14 705 720
Ozfirat Z. Korbonits M. AIP gene and familial isolated pituitary adenomas. Mol Cell Endocrinol: 2010; 326 71 79
Formosa R. Borg J. Vassallo J. Aryl hydrocarbon receptor (AHR) is a potential tumour suppressor in pituitary adenomas. Endocr Relat Cancer: 2017; 24 445 457
Kazlauskas A. Poellinger L. Pongratz I. The immunophilin-like protein XAP2 regulates ubiquitination and subcellular localization of the dioxin receptor. J Biol Chem: 2000; 275 41317 41324
Tuominen I. Heliovaara E. Raitila A. et al. AIP inactivation leads to pituitary tumorigenesis through defective Galphai-cAMP signaling. Oncogene: 2015; 34 1174 1184
Hernandez-Ramirez L. C. Trivellin G. Stratakis C. A. Role of Phosphodiesterases on the Function of Aryl Hydrocarbon Receptor-Interacting Protein (AIP) in the Pituitary Gland and on the Evaluation of AIP Gene Variants. Horm Metab Res: 2017; 49 286 295
Schernthaner-Reiter M. H. Trivellin G. Stratakis C. A. Interaction of AIP with protein kinase A (cAMP-dependent protein kinase). Hum Mol Genet: 2018; 27 2604 2613
Hernandez-Ramirez L. C. Morgan RM L. Barry S. et al. Multi-chaperone function modulation and association with cytoskeletal proteins are key features of the function of AIP in the pituitary gland. Oncotarget: 2018; 9 9177 9198
Rostomyan L. Potorac I. Beckers P. et al. AIP mutations and gigantism. Ann Endocrinol (Paris): 2017; 78 123 130
Trivellin G. Daly A. F. Faucz F. R. et al. Gigantism and acromegaly due to Xq26 microduplications and GPR101 mutation. N Engl J Med: 2014; 371 2363 2374
Beckers A. Lodish M. B. Trivellin G. et al. X-linked acrogigantism syndrome: Clinical profile and therapeutic responses. Endocr Relat Cancer: 2015; 22 353 367
Iacovazzo D. Caswell R. Bunce B. et al. Germline or somatic GPR101 duplication leads to X-linked acrogigantism: a clinico-pathological and genetic study. Acta Neuropathol Commun: 2016; 4 56
Trivellin G. Bjelobaba I. Daly A. F. et al. Characterization of GPR101 transcript structure and expression patterns. J Mol Endocrinol: 2016; 57 97 111
Daly A. F. Lysy P. A. Desfilles C. et al. GHRH excess and blockade in X-LAG syndrome. Endocr Relat Cancer: 2016; 23 161 170
Beckers A. Rostomyan L. Potorac I. et al. X-LAG: How did they grow so tall? Ann Endocrinol (Paris): 2017; 78 131 136
Daly A. F. Yuan B. Fina F. et al. Somatic mosaicism underlies X-linked acrogigantism syndrome in sporadic male subjects. Endocr Relat Cancer: 2016; 23 221 233
Xekouki P. Pacak K. Almeida M. et al. Succinate dehydrogenase (SDH) D subunit (SDHD) inactivation in a growth-hormone-producing pituitary tumor: A new association for SDH? J Clin Endocrinol Metab: 2012; 97 E357 E366
Xekouki P. Szarek E. Bullova P. et al. Pituitary adenoma with paraganglioma/pheochromocytoma (3PAs) and succinate dehydrogenase defects in humans and mice. J Clin Endocrinol Metab: 2015; 100 E710 E719
Hernandez-Ramirez L. C. Stratakis C. A. Genetics of Cushing's Syndrome. Endocrinol Metab Clin North Am: 2018; 47 275 297
O'Toole S. M. Denes J. Robledo M. et al. 15 Years of Paraganglioma: The association of pituitary adenomas and phaeochromocytomas or paragangliomas. Endocr Relat Cancer: 2015; 22 T105 T122
Selak M. A. Armour S. M. MacKenzie E. D. et al. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell: 2005; 7 77 85
Letouze E. Martinelli C. Loriot C. et al. SDH mutations establish a hypermethylator phenotype in paraganglioma. Cancer Cell: 2013; 23 739 752
Mannelli M. Canu L. Ercolino T. et al. Diagnosis of Endocrine Disease: SDHx mutations: beyond pheochromocytomas and paragangliomas. Eur J Endocrinol: 2018; 178 R11 R17
Tufton N. Roncaroli F. Hadjidemetriou I. et al. Pituitary carcinoma in a patient with an SDHB mutation. Endocr Pathol: 2017; 28 320 325
Denes J. Swords F. Rattenberry E. et al. Heterogeneous genetic background of the association of pheochromocytoma/paraganglioma and pituitary adenoma: Rresults from a large patient cohort. J Clin Endocrinol Metab: 2015; 100 E531 E541
Daly A. F. Castermans E. Oudijk L. et al. Pheochromocytomas and pituitary adenomas in three patients with MAX exon deletions. Endocr Relat Cancer: 2018; 25 L37 L42
Williams V. C. Lucas J. Babcock M. A. et al. Neurofibromatosis type 1 revisited. Pediatrics: 2009; 123 124 133
Hannah-Shmouni F. Trivellin G. Stratakis C. A. Genetics of gigantism and acromegaly. Growth Horm IGF Res: 2016; 30-31 37 41
Schultz KA P. Williams G. M. Kamihara J. et al. DICER1 and associated conditions: Identification of at-risk individuals and recommended surveillance strategies. Clin Cancer Res: 2018; 24 2251 2261
de Kock L. Sabbaghian N. Plourde F. et al. Pituitary blastoma: A pathognomonic feature of germ-line DICER1 mutations. Acta Neuropathol: 2014; 128 111 122
Solarski M. Rotondo F. Foulkes W. D. et al. DICER1 gene mutations in endocrine tumors. Endocr Relat Cancer: 2018; 25 R197 R208
Scheithauer B. W. Kovacs K. Horvath E. et al. Pituitary blastoma. Acta Neuropathol: 2008; 116 657 666
Lam H. C. Nijmeh J. Henske E. P. New developments in the genetics and pathogenesis of tumours in tuberous sclerosis complex. J Pathol: 2017; 241 219 225
Tigas S. Carroll P. V. Jones R. et al. Simultaneous Cushing's disease and tuberous sclerosis; a potential role for TSC in pituitary ontogeny. Clin Endocrinol (Oxf): 2005; 63 694 695
Nandagopal R. Vortmeyer A. Oldfield E. H. et al. Cushing's syndrome due to a pituitary corticotropinoma in a child with tuberous sclerosis: An association or a coincidence? Clin Endocrinol (Oxf): 2007; 67 639 641