Paper published in a journal (Scientific congresses and symposiums)
Multimodal and multiview distillation for real-time player detection on a football field
Cioppa, Anthony; Deliège, Adrien; Noor, Ul Huda et al.
2020In IEEE Conference on Computer Vision and Pattern Recognition. Proceedings, p. 3846-3855
Peer reviewed
 

Files


Full Text
Cioppa2020Multimodal.pdf
Author postprint (5.27 MB)
Multimodal and multiview distillation for real-time player detection on a football field
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
multiview distillation; multimodal distillation; knowledge distillation; deep learning; player detection; thermal camera; fisheye camera; real-time detection; football; ViBe; Sports; Sport; Soccer
Abstract :
[en] Monitoring the occupancy of public sports facilities is essential to assess their use and to motivate their construction in new places. In the case of a football field, the area to cover is large, thus several regular cameras should be used, which makes the setup expensive and complex. As an alternative, we developed a system that detects players from a unique cheap and wide-angle fisheye camera assisted by a single narrow-angle thermal camera. In this work, we train a network in a knowledge distillation approach in which the student and the teacher have different modalities and a different view of the same scene. In particular, we design a custom data augmentation combined with a motion detection algorithm to handle the training in the region of the fisheye camera not covered by the thermal one. We show that our solution is effective in detecting players on the whole field filmed by the fisheye camera. We evaluate it quantitatively and qualitatively in the case of an online distillation, where the student detects players in real time while being continuously adapted to the latest video conditions.
Research Center/Unit :
Montefiore Institute - Montefiore Institute of Electrical Engineering and Computer Science - ULiège
Telim
Disciplines :
Electrical & electronics engineering
Author, co-author :
Cioppa, Anthony   ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Télécommunications
Deliège, Adrien   ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Télécommunications
Noor, Ul Huda
Gade, Rikke
Van Droogenbroeck, Marc  ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Télécommunications
Moeslund, Thomas B.
 These authors have contributed equally to this work.
Language :
English
Title :
Multimodal and multiview distillation for real-time player detection on a football field
Publication date :
June 2020
Event name :
IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) - CVSports
Event organizer :
IEEE
Event place :
Seattle, United States - Washington
Event date :
from 14-06-2020 to 19-06-2020
Audience :
International
Journal title :
IEEE Conference on Computer Vision and Pattern Recognition. Proceedings
ISSN :
1063-6919
eISSN :
2575-7075
Publisher :
IEEE Computer Society, Washington, United States - District of Columbia
Pages :
3846-3855
Peer reviewed :
Peer reviewed
Name of the research project :
DeepSport
Funders :
FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture
DGTRE - Région wallonne. Direction générale des Technologies, de la Recherche et de l'Énergie
Commentary :
Best CVSports paper award 2020
Available on ORBi :
since 16 April 2020

Statistics


Number of views
201 (36 by ULiège)
Number of downloads
121 (14 by ULiège)

Scopus citations®
 
15
Scopus citations®
without self-citations
8
OpenCitations
 
11
OpenAlex citations
 
18

Bibliography


Similar publications



Contact ORBi