Catalysis; Sol-gel; Oxidation; Water solvent; Olefins
Abstract :
[en] The main goal of this work is the preparation of magnetic perovskites La1-xSrxMnO3 (x= 0, 0.2 and 0.4) with a modified sol-gel process and the assessment of their catalytic activity in the oxidation of styrene in neat water (aqueous medium). The structural properties of LaMnO3, La0.8Sr0.2MnO3 and La0.6Sr0.4MnO3 were characterized using the X-ray Diffraction and infrared techniques. Microstructural features of the catalyst were confirmed by the Scanning Electron Microscopy. The sample La0.6Sr0.4MnO3 has proven a good catalytic activity in the oxidation of styrene after different optimization steps. The catalyst has shown a good recyclability after four cycles. The optimized parameters of the reaction procedure were applied successfully in the oxidation of other simple olefins.
Disciplines :
Materials science & engineering
Author, co-author :
Hasnaoui, Ali
Fkhar, Lahcen
Nayad, Abdallah
Mahmoud, Abdelfattah ; Université de Liège - ULiège > Département de chimie (sciences) > LCIS - GreenMAT
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Polshettiwar, V., Varma, R.S., Nanoparticle-supported and magnetically recoverable palladium (Pd) catalyst: a selective and sustainable oxidation protocol with high turnover number. Org. Biomol. Chem. 7 (2009), 37–40, 10.1039/b817669h.
Wang, Y.F., Gao, Y.R., Mao, S., Zhang, Y.L., Guo, D.D., Yan, Z.L., Guo, S.H., Wang, Y.Q., Wacker-type oxidation and dehydrogenation of terminal olefins using molecular oxygen as the sole oxidant without adding ligand. Org. Lett. 16 (2014), 1610–1613, 10.1021/ol500218p.
Zhang, Y., Li, Y.X., Liu, L., Han, Z.B., Palladium nanoparticles supported on UiO-66-NH2 as heterogeneous catalyst for epoxidation of styrene. Inorg. Chem. Commun. 100 (2019), 51–55, 10.1016/j.inoche.2018.12.010.
C. Wacker, O. With, A. Substoichiometric, tetrahedron letters Pergamon Tetrahedron Lett. 39 (1998) 8765–8768.
Masunga, N., Tito, G.S., Meijboom, R., Catalytic evaluation of mesoporous metal oxides for liquid phase oxidation of styrene. Appl. Catal. A Gen. 552 (2018), 154–167, 10.1016/j.apcata.2017.12.010.
Paul, B., Sharma, S.K., Khatun, R., Adak, S., Singh, G., Joshi, V., Poddar, M.K., Bordoloi, A., Sasaki, T., Bal, R., Development of highly efficient and durable three-dimensional octahedron NiCo2O4 spinel nanoparticles toward the selective oxidation of styrene. Ind. Eng. Chem. Res. 58 (2019), 18168–18177, 10.1021/acs.iecr.9b02547.
H.S. Siegel, Physiological in Birds, 30 (2014) 529–534.
Lydia, M., Kumar, S.S., Selvakumar, A.I., Prem, G.E., A comprehensive review on wind turbine power curve modeling techniques. Renew. Sustain. Energy Rev. 30 (2014), 452–460, 10.1016/j.rser.2013.10.030.
V.R.C., D.K. Dumbre, Solvent-free selective oxidation of benzyl alcohol to benzaldehyde by tert-butyl hydroperoxide over U3O8-supported nano-gold catalysts, Appl. Catal. 375 (2010) 252–257.
Fkhar, L., Mahmoud, A., Boschini, F., Hamedoun, M., Benyoussef, A., Hlil, E.K., Ali, M.A., Mounkachi, O., Structural, magnetic, and magnetocaloric properties in rare earth orthochromite (Sm, Nd, and La)CrO3 for cooling product. J. Supercond. Nov. Magn., 2019, 15–17, 10.1007/s10948-019-05260-z.
Lang, X., Zhao, Y., Cai, K., Li, L., Chen, D., Zhang, Q., A facile synthesis of stable TiO2/TiC composite material as sulfur immobilizers for cathodes of lithium-sulfur batteries with excellent electrochemical performances. Energy Technol. 7 (2019), 1–7, 10.1002/ente.201900543.
Cai, K., Li, Y.Y., Lang, X., Li, L., Zhang, Q., Synergistic effect of sulfur on electrochemical performances of carbon-coated vanadium pentoxide cathode materials with polyvinyl alcohol as carbon source for lithium-ion batteries. Int. J. Energy Res. 43 (2019), 7664–7671, 10.1002/er.4722.
Drake, C., Deshpande, S., Bera, D., Seal, S., Metallic nanostructured materials based sensors. Int. Mater. Rev. 52 (2007), 289–316, 10.1179/174328007X212481.
Van Leuken, H., De Groot, R.A., Half-metallic antiferromagnets. Phys. Rev. Lett. 74 (1995), 1171–1173, 10.1103/PhysRevLett.74.1171.
Pardeshi, S.K., Pawar, R.Y., SrFe2O4 complex oxide an effective and environmentally benign catalyst for selective oxidation of styrene. J. Mol. Catal. A Chem. 334 (2011), 35–43, 10.1016/j.molcata.2010.10.020.
Zhang, Y., Yang, F., Gao, R., Dai, W.L., Manganese-doped CeO2 nanocubes as highly efficient catalysts for styrene epoxidation with TBHP. Appl. Surf. Sci. 471 (2019), 767–775, 10.1016/j.apsusc.2018.11.246.
Lei, J., Lu, X.H., Zhang, J.L., Wei, X.L., Zhou, D., Xia, Q.H., Epoxidation of mixed bi-olefins with air over nanosized Co3O4 assisted by ultrasonic waves. Indian J. Chem. - Sect. A Inorganic, Phys. Theor Anal. Chem. 52 (2013), 709–716.
Islam, S.M., Roy, A.S., Mondal, P., Paul, S., Salam, N., A recyclable polymer anchored copper(II) catalyst for oxidation reaction of olefins and alcohols with tert-butylhydroperoxide in aqueous medium. Inorg. Chem. Commun. 24 (2012), 170–176, 10.1016/j.inoche.2012.07.002.
Patel, A., Pathan, S., Solvent free selective oxidation of styrene and benzyl alcohol to benzaldehyde over an eco-friendly and reusable catalyst, undecamolybdophosphate supported onto neutral alumina. Ind. Eng. Chem. Res. 51 (2012), 732–740, 10.1021/ie2020608.
Liu, G., Hou, M., Song, J., Zhang, Z., Wu, T., Han, B., Ni2+-containing ionic liquid immobilized on silica: effective catalyst for styrene oxidation with H2O2 at solvent-free condition. J. Mol. Catal. A Chem. 316 (2009), 90–94, 10.1016/j.molcata.2009.10.004.
Aberkouks, A., Mekkaoui, A.A., Boualy, B., El Houssame, S., Ali, M.A., El Firdoussi, L., Selective oxidation of styrene to benzaldehyde by Co-Ag Codoped ZnO catalyst and H2O2 as. Oxidant, 2018, 2018.
Rauchdi, M., Ait, M., Roucoux, A., Denicourt-nowicki, A., General Novel access to verbenone via ruthenium nanoparticles-catalyzed oxidation of α -pinene in neat water. Appl. Catal. A, Gen. 550 (2018), 266–273, 10.1016/j.apcata.2017.11.016.
Batis, N.H., Delichere, P., Batis, H., Physicochemical and catalytic properties in methane combustion of La1-xCaxMnO3±y (0 ≤ x ≤ 1; -0.04 ≤ y ≤ 0.24) perovskite-type oxide. Appl. Catal. A Gen. 282 (2005), 173–180, 10.1016/j.apcata.2004.12.009.
Melnikov, O.V., Gorbenko, O.Y., M̌arkelova, M.N., Kaul, A.R., Atsarkin, V.A., Demidov, V.V., Soto, C., Roy, E.J., Odintsov, B.M., Ag-doped manganite nanoparticles: new materials for temperature-controlled medical hyperthermia: temperature-controlled medical hyperthermia. J. Biomed. Mater. Res. 91A:4 (2009), 1048–1055, 10.1002/jbm.a.32177.
Fan, J., Pi, L., Zhang, L., Tong, W., Ling, L., Hong, B., Shi, Y., Zhang, W., Lu, D., Zhang, Y., Magnetic and magnetocaloric properties of perovskite manganite Pr 0.55Sr0.45MnO3. Phys. B Condens. Matter. 406 (2011), 2289–2292, 10.1016/j.physb.2011.03.056.
Smadici, Ş., Abbamonte, P., Bhattacharya, A., Zhai, X., Jiang, B., Rusydi, A., Eckstein, J.N., Bader, S.D., Zuo, J.M., Electronic reconstruction at SrMnO3-LaMnO3 superlattice interfaces. Phys. Rev. Lett. 99 (2007), 2–5, 10.1103/PhysRevLett.99.196404.
Shukla, R., Bera, A.K., Yusuf, S.M., Deshpande, S.K., Tyagi, A.K., Hermes, W., Eul, M., Pöttgen, R., Multifunctional nanocrystalline CeCrO3: antiferromagnetic, relaxor, and optical properties. J. Phys. Chem. C. 113 (2009), 12663–12668, 10.1021/jp903013u.
Song, L., Zhu, Y., Yang, Z., Wang, C., Lu, X., Oxidase-mimicking activity of perovskite LaMnO3+δ nanofibers and their application for colorimetric sensing. J. Mater. Chem. B. 6 (2018), 5931–5939, 10.1039/C8TB01706A.
Mahmood, A., Warsi, M.F., Ashiq, M.N., Sher, M., Improvements in electrical and dielectric properties of substituted multiferroic LaMnO3 based nanostructures synthesized by co-precipitation method. Mater. Res. Bull. 47 (2012), 4197–4202, 10.1016/j.materresbull.2012.09.003.
Li, Y., Xue, L., Fan, L., Yan, Y., The effect of citric acid to metal nitrates molar ratio on sol-gel combustion synthesis of nanocrystalline LaMnO3 powders. J. Alloys Compd. 478 (2009), 493–497, 10.1016/j.jallcom.2008.11.068.
Deng, J., Zhang, Y., Dai, H., Zhang, L., He, H., Au, C.T., Effect of hydrothermal treatment temperature on the catalytic performance of single-crystalline La0.5Sr0.5MnO3-δ microcubes for the combustion of toluene. Catal. Today 139 (2008), 82–87, 10.1016/j.cattod.2008.08.010.
Wei, Z.X., Wei, L., Gong, L., Wang, Y., Hu, C.W., Combustion synthesis and effect of LaMnO3 and La0.8Sr0.2MnO3 on RDX thermal decomposition. J. Hazard. Mater. 177 (2010), 554–559, 10.1016/j.jhazmat.2009.12.068.
Bhavani, S.J., Lee, A.G., Autothermal CO2 reforming with methane over crystalline. Metall. Met. Phys. 3 (2018), 1–6.
Wu, L.Q., Qi, W.H., Ge, X.S., Ji, D.H., Li, Z.Z., Tang, G.D., Zhong, W., Study of the dependence of the magnetic moment of La1-xSrxMnO3 on the Sr doping level x. Epl., 120, 2017, 10.1209/0295-5075/120/27001.
Mahendiran, R., Mahesh, R., Raychaudhuri, A.K., Rao, C.N.R., Composition dependence of in La1-xCaxMnO3 iant magnetoresistance 0.1 5 II: 5 0.9). Solid State Commun. 94 (1995), 515–518.
Laiho, R., Lisunov, K.G., Lähderanta, E., Petrenko, P., Stamov, V.N., Zakhvalinskii, V.S., Low-field magnetic properties of La1-xCaxMnO3 (0 ≤ x ≤ 0.4). J. Magn. Magn. Mater. 213 (2000), 271–277, 10.1016/S0304-8853(00)00023-8.
Chen, C.H., Cheong, S.W., Commensurate to incommensurate charge ordering and its real-space images in La0.5Ca0.5MnO3. Phys. Rev. Lett. 76, 1996, 4042–4045, 10.1103/PhysRevLett.76.4042.
H. Search, C. Journals, A. Contact, M. Iopscience, I.P. Address, My IOPscience A study of the magnetic and electrical crossover region of LaCa, Science (80.-) 4843 (1999).
Thorat, N.D., Shinde, K.P., Pawar, S.H., Barick, K.C., Betty, C.A., Ningthoujam, R.S., Polyvinyl alcohol: an efficient fuel for synthesis of superparamagnetic LSMO nanoparticles for biomedical application. Dalt. Trans. 41 (2012), 3060–3071, 10.1039/c2dt11835a.
Cochran, E.A., Woods, K.N., Johnson, D.W., Page, C.J., Boettcher, S.W., Unique chemistries of metal-nitrate precursors to form metal-oxide thin films from solution: materials for electronic and energy applications. J. Mater. Chem. A 7 (2019), 24124–24149, 10.1039/c9ta07727h.
Fkhar, L., Mounkachi, O., El Maalam, K., Hamedoun, M., Mahmoud, A., Boschini, F., El, A., Ali, M.A., Large magnetic entropy change in Pr2/3 Sr 1/3 MnO 3 -CuO composite at room temperature. J. Supercond. Nov. Magn., 2019.
Wang, B., Zhang, J., Zou, X., Dong, H., Yao, P., Selective oxidation of styrene to 1,2-epoxyethylbenzene by hydrogen peroxide over heterogeneous phosphomolybdic acid supported on ionic liquid modified MCM-41. Chem. Eng. J. 260 (2015), 172–177, 10.1016/j.cej.2014.08.076.
Liu, J., Chen, T., Yan, X., Wang, Z., Jian, R., Jian, P., Yuan, E., NiCo 2 O 4 nanoneedle-assembled hierarchical microflowers for highly selective oxidation of styrene. Catal. Commun. 109 (2018), 71–75, 10.1016/j.catcom.2018.02.023.
Chandel, M., Ghosh, B.K., Moitra, D., Ghosh, N.N., Barium hexaferrite (BaFe12O19) nanoparticles as highly active and magnetically recoverable catalyst for selective epoxidation of styrene to styrene oxide. J. Nanosci. Nanotechnol. 18 (2017), 3478–3483, 10.1166/jnn.2018.14625.
Xiao, Y., Guo, W., Chen, H., Li, H., Xu, X., Wu, P., Shen, Y., Zheng, B., Huo, F., Wei, W.D., Ultrathin 2D Cu-porphyrin MOF nanosheets as a heterogeneous catalyst for styrene oxidation. Mater. Chem. Front. 3 (2019), 1580–1585, 10.1039/c9qm00201d.
Liu, J., Chen, T., Jian, P., Wang, L., Yan, X., Hollow urchin-like NiO/NiCo2O4 heterostructures as highly efficient catalysts for selective oxidation of styrene. J. Colloid Interface Sci. 526 (2018), 295–301, 10.1016/j.jcis.2018.05.001.
Sakthivel, B., Josephine, D.S.R., Sethuraman, K., Dhakshinamoorthy, A., Oxidation of styrene using TiO2-graphene oxide composite as solid heterogeneous catalyst with hydroperoxide as oxidant. Catal. Commun. 108 (2018), 41–45, 10.1016/j.catcom.2018.01.029.
Tong, J., Li, W., Bo, L., Wang, H., Hu, Y., Zhang, Z., Mahboob, A., Selective oxidation of styrene catalyzed by cerium-doped cobalt ferrite nanocrystals with greatly enhanced catalytic performance. J. Catal. 344 (2016), 474–481, 10.1016/j.jcat.2016.10.003.
Pawar, R.Y., Pardeshi, S.K., Selective oxidation of styrene to benzaldehyde using soft BaFe2O4 synthesized by citrate gel combustion method. Arab. J. Chem. 11 (2018), 282–290, 10.1016/j.arabjc.2014.08.012.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.