Unpublished conference/Abstract (Scientific congresses and symposiums)
The dimethylsulfide cycle in the eutrophied Southern North Sea: a model study integrating phytoplankton and bacterial processes
Gypens, N; Borges, Alberto; Speeckaert, G et al.
20146th International Symposium on biological and environmental chemistry of DMS(P) and related compounds
 

Files


Full Text
Gypens_DMS_Barcelone.pdf
Publisher postprint (3.22 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Abstract :
[en] We developed a module describing the dimethylsulfoniopropionate (DMSP) and dimethylsulfide (DMS) dynamics, including biological transformations by phytoplankton and bacteria, and physico-chemical processes (including DMS air-sea exchange). This module was integrated in the MIRO ecological model and applied in a 0D frame in the Southern North Sea (SNS). The DMS(P) module is built on parameterizations derived from available knowledge on DMS(P) sources, transformations and sinks, and provides an explicit representation of bacterial activity in contrast to most of existing models that only include phytoplankton process (and abiotic transformations). The model is tested in a highly productive coastal ecosystem (the Belgian coastal zone, BCZ) dominated by diatoms and the Haptophyceae Phaeocystis, respectively low and high DMSP producers. On an annual basis, the particulate DMSP (DMSPp) production simulated in 1989 is mainly related to Phaeocystis colonies (78%) rather than diatoms (13%) and nanoflagellates (9%). Accordingly, sensitivity analysis shows that the model responds more to changes in the sulfur:carbon (S:C) quota and lyase yield of Phaeocystis. DMS originates equally from phytoplankton and bacterial DMSP-lyase activity and only 3% of the DMS is emitted to the atmosphere. Model analysis demonstrates the sensitivity of DMS emission towards the atmosphere to the description and parameterization of biological processes emphasizing the need of adequately representing in models both phytoplankton and bacterial processes affecting DMS(P) dynamics. This is particularly important in eutrophied coastal environments such as the SNS dominated by high non-diatom blooms and where empirical models developed from data-sets biased towards open ocean conditions do not satisfactorily predict the timing and amplitude of the DMS seasonal cycle. In order to predict future feedbacks of DMS emissions on climate, it is needed to account for hotspots of DMS emissions from coastal environments that, if eutrophied, are dominated not only by diatoms.
Research center :
FOCUS - Freshwater and OCeanic science Unit of reSearch - ULiège
Disciplines :
Aquatic sciences & oceanology
Author, co-author :
Gypens, N
Borges, Alberto  ;  Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Chemical Oceanography Unit (COU)
Speeckaert, G
Lancelot, C
Language :
English
Title :
The dimethylsulfide cycle in the eutrophied Southern North Sea: a model study integrating phytoplankton and bacterial processes
Publication date :
2014
Event name :
6th International Symposium on biological and environmental chemistry of DMS(P) and related compounds
Event date :
26-05-2014 to 30-05-2014
Audience :
International
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique [BE]
Available on ORBi :
since 10 April 2020

Statistics


Number of views
42 (1 by ULiège)
Number of downloads
34 (2 by ULiège)

Bibliography


Similar publications



Contact ORBi