This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
All documents in ORBi are protected by a user license.
[en] Microalgae are promising feedstock for the production of biodiesel and diverse medium- and high-value products such as pigments and polyunsaturated fatty acids. The importance of strain selection adapted to specific environments is important for economical purposes. We characterize here two microalgal strains, isolated from wastewater of shrimp cultivation ponds in Vietnam. Based on the 18S rDNA-ITS region, one strain belongs to the Eustigmatophyceae class and is identical to the Nannochloropsis salina isolate D12 (JX185299.1), while the other is a Chlorophyceae belonging to the Desmodesmus genus, which possesses a S516 group I intron in its 18S rDNA gene. The N. salina strain is a marine and oleaginous microalga (40% of dry weight (DW) at stationary phase) whole oil is rich in saturated fatty acids (around 45% of C16:0) suitable for biodiesel and contains a few percent of eicosapentaenoic acid (C20:5). The Desmodesmus isolate can assimilate acetate and ammonium and is rich in lutein. Its oil contains around 40%–50% α-linolenic acid (C18:3), an essential fatty acid. Since they tolerate various salinities (10% to 35‰), both strains are thus interesting for biodiesel or aquaculture valorization in coastal and tropical climate where water, nutrient, and salinity availability vary greatly depending on the season.
Research Center/Unit :
Genetics and Physiology of Microalgae, InBios/Phytosystems Research Unit, University of Liege, 4000 Liege, Belgium
Rodolfi, L., Chini, G., Niccol, Z., Giulia, B., Natascia, P., Gimena, B., Mario, B., Tredici, R., Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor (2009) Biotechnol. Bioeng., 102, pp. 100-112. , [CrossRef] [PubMed]
Sydney, E.B., Sydney, A.C.N., De Carvalho, J.C., Soccol, C.R., Microalgal strain selection for biofuel production (2019) Biomass, Biofuels and Biochemicals: Biofuels from Algae, pp. 59-66. , Panday, A., Chang, J.S., Soccol, C.R., Lee, D.J., Chisti, Y., Elsevier, B.V., Eds.
Elsevier: Amsterdam, The Netherlands
Laurens, L.M.L., Chen-Glasser, M., McMillan, J.D., A perspective on renewable bioenergy from photosynthetic algae as feedstock for biofuels and bioproducts (2017) Algal Res., 24, pp. 261-264. , [CrossRef]
Hu, H., Gao, K., Optimization of growth and fatty acid composition of a unicellular marine picoplankton, Nannochloropsis sp., with enriched carbon sources (2003) Biotechnol. Lett., 25, pp. 421-425. , [CrossRef] [PubMed]
Sajjadi, B., Chen, W.Y., Raman, A.A.A., Ibrahim, S., Microalgae lipid and biomass for biofuel production: A comprehensive review on lipid enhancement strategies and their effects on fatty acid composition (2018) Renew. Sustain. Energy Rev., 97, pp. 200-232. , [CrossRef]
Petrie, J.R., Singh, S.P., Expanding the docosahexaenoic acid food web for sustainable production: Engineering lower plant pathways into higher plants (2011) AoB Plants, 2011. , [CrossRef]
Spolaore, P., Joannis-Cassan, C., Duran, E., Isambert, A., Commercial applications of microalgae (2006) J. Biosci. Bioeng., 101, pp. 87-96. , [CrossRef]
Gong, M., Bassi, A., Carotenoids from microalgae: A review of recent developments (2016) Biotechnol. Adv., 34, pp. 1396-1412. , [CrossRef]
De Vries, J., Archibald, J.M., Endosymbiosis: Did plastids evolve from a freshwater cyanobacterium? (2017) Curr. Biol., 27, pp. R103-R122. , [CrossRef]
De Vries, J., Gould, S.B., The monoplastidic bottleneck in algae and plant evolution (2018) J. Cell Sci., 131, p. jcs203414. , [CrossRef]
Archibald, J.M., Genomic perspectives on the birth and spread of plastids (2015) Proc. Natl. Acad. Sci. USA, 112, pp. 10147-10153. , [CrossRef]
Keeling, P.J., The Number, Speed, and Impact of Plastid Endosymbioses in Eukaryotic Evolution (2013) Annu. Rev. Plant Biol., 64, pp. 583-607. , [CrossRef] [PubMed]
Newman, S.M., Boynton, J.E., Gillham, N.W., Randolph-Anderson, B.L., Johnson, A.M., Harris, E.H., Transformation of chloroplast ribosomal RNA genes in Chlamydomonas: Molecular and genetic characterization of integration events (1990) Genetics, 126, pp. 875-888. , [PubMed]
Harris, E.H., (1989) The Chlamydomonas Sourcebook, , Elsevier Inc.: Amsterdam, The Netherlands
Guillard, R.R., Ryther, J.H., Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran (1962) Can. J. Microbiol., 8, pp. 229-239. , [CrossRef] [PubMed]
Makridis, P., Vadstein, O., Food size selectivity of Artemia franciscana at three (1999) J. Plankton Res., 21, pp. 2191-2201. , [CrossRef]
Hoekman, S.K., Broch, A., Robbins, C., Ceniceros, E., Natarajan, M., Review of biodiesel composition, properties, and specifications (2012) Renew. Sustain. Energy Rev., 16, pp. 143-169. , [CrossRef]
Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding (1976) Anal. Biochem., 72, pp. 248-254. , [CrossRef]
Wilgenbusch, J.C., Swofford, D., Inferring evolutionary trees with paup (2003) Curr. Protoc. Bioinforma., , [CrossRef]
Jobb, G., Von Haeseler, A., Strimmer, K., TREEFINDER: A powerful graphical analysis environment for molecular phylogenetics (2004) BMC Evol. Biol., 4, p. 18. , [CrossRef]
Kumar, S., Stecher, G., Tamura, K., MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets (2016) Mol. Biol. Evol., 33, pp. 1870-1874. , [CrossRef]
White, T.J., Bruns, T., Lee, S., Taylor, J., (1990) Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics: PCR-Protocols and Applications-A Laboratory Manual, , Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.
Academic Press Inc.: New York, NY, USA
Smolik, M., Krupa-Małkiewicz, M., Smolik, B., Wieczorek, J., Predygier, K., rDNA variability assessed in PCR reactions of selected accessions of Acer (2011) Not. Bot. Horti Agrobot. Cluj-Napoca, 39, pp. 260-266. , [CrossRef]
Hoshina, R., DN Aanalyses of a private collection of microbial green algae contribute to a better understanding of microbial diversity (2014) BMC Res. Notes, 4, p. 792. , [CrossRef] [PubMed]
Suh, S.O., Jones, K.G., Blackwell, M., AGroup I intron in the nuclear small subunitrRNAgene of Cryptendoxyla hypophloia, an ascomycetous fungus: Evidence for a new major class of Group I introns. (1999) J. Mol. Evol., 48, pp. 493-500. , [CrossRef] [PubMed]
Ma, Y., Wang, Z., Yu, C., Yin, Y., Zhou, G., Evaluation of the potential of 9 Nannochloropsis strains for biodiesel production (2014) Bioresour. Technol., 167, pp. 503-509. , [CrossRef] [PubMed]
Hu, Q., Xiang, W., Dai, S., Li, T., Yang, F., Jia, Q., Wang, G., Wu, H., The influence of cultivation period on growth and biodiesel properties of microalga Nannochloropsis gaditana 1049 (2015) Bioresour. Technol., 192, pp. 157-164. , [CrossRef] [PubMed]
Wu, Z., Zhu, Y., Huang, W., Zhang, C., Li, T., Zhang, Y., Li, A., Evaluation of flocculation induced by pH increase for harvesting microalgae and reuse of flocculated medium (2012) Bioresour. Technol., 110, pp. 496-502. , [CrossRef]
Harris, E.H., Chlamydomonas as a model organism (2001) Annu. Rev. Plant Physiol. Plant Mol. Biol., 52, pp. 363-406. , [CrossRef]
Ji, F., Hao, R., Liu, Y., Li, G., Zhou, Y., Dong, R., Isolation of a novel microalgae strain Desmodesmus sp. And optimization of environmental factors for its biomass production (2013) Bioresour. Technol., 148, pp. 249-254. , [CrossRef]
Zhang, Y., He, M., Zou, S., Fei, C., Yan, Y., Zheng, S., Rajper, A.A., Wang, C., Breeding of high biomass and lipid producing Desmodesmus sp by Ethylmethane sulfonate-induced mutation (2016) Bioresour. Technol., 207, pp. 268-275. , [CrossRef]
Vieler, A., Wu, G., Tsai, C.H., Bullard, B., Cornish, A.J., Harvey, C., Reca, I.B., Buehl, C.J., Genome, functional gene annotation, and nuclear transformation of the heterokont oleaginous alga nannochloropsis oceanica ccmp1779 (2012) PLoS Genet., 8, p. e1003064. , [CrossRef]
Solovchenko, A., Lukyanov, A., Solovchenko, O., Didi-Cohen, S., Boussiba, S., Khozin-Goldberg, I., Interactive effects of salinity, high light, and nitrogen starvation on fatty acid and carotenoid profiles in Nannochloropsis oceanica CCALA 804 (2014) Eur. J. Lipid Sci. Technol., 116, pp. 635-644. , [CrossRef]
Ruivo, M., Amorim, A., Cartaxana, P., Effects of growth phase and irradiance on phytoplankton pigment ratios: Implications for chemotaxonomy in coastal waters (2011) J. Plankton Res., 33, pp. 1012-1022. , [CrossRef]
Hu, J., Nagarajan, D., Zhang, Q., Chang, J.S., Lee, D.J., Heterotrophic cultivation of microalgae for pigment production: A review (2018) Biotechnol. Adv., 36, pp. 54-67. , [CrossRef]
Lubian, L.M., Montero, O., Moreno-Garrido, I., Huertas, I.E., Sobrino, C., Gonzalez-Del Valle, M., Pares, G., Nannochloropsis (Eustigmatophyceae) as source of commercially valuable pigments (2000) J. Appl. Phycol., 12, pp. 249-255. , [CrossRef]
Liu, J., Sun, Z., Gerken, H., Liu, Z., Jiang, Y., Chen, F., Chlorella zofingiensis as an alternative microalgal producer of astaxanthin: Biology and industrial potential (2014) Mar. Drugs, 12, pp. 3487-3515. , [CrossRef]
Chen, W.-C., Hsu, Y.-C., Chang, J.-S., Ho, S.-H., Wang, L.-F., Wei, Y.-H., Enhancing production of lutein by a mixotrophic cultivation system using microalga Scenedesmus obliquus CWL-1 (2019) Bioresour. Technol., 291, p. 121891. , [CrossRef] [PubMed]
Rauytanapanit, M., Janchot, K., Kusolkumbot, P., Sirisattha, S., Waditee-Sirisattha, R., Praneenararat, T., Nutrient deprivation-associated changes in green microalga coelastrum sp TISTR 9501RE enhanced potent antioxidant carotenoids (2019) Mar. Drugs, 17, p. 328. , [CrossRef] [PubMed]
Christa, G., Cruz, S., Jahns, P., De Vries, J., Cartaxana, P., Esteves, A.C., Serôdio, J., Gould, S.B., Photoprotection in a monophyletic branch of chlorophyte algae is independent of energy-dependent quenching (qE) (2017) New Phytol., 214, pp. 1132-1144. , [CrossRef] [PubMed]
Khozin-Goldberg, I., Boussiba, S., Concerns over the reporting of inconsistent data on fatty acid composition for microalgae of the genus Nannochloropsis (Eustigmatophyceae) (2011) J. Appl. Phycol., 23, pp. 933-934. , [CrossRef]
Plancke, C., Vigeolas, H., Höhner, R., Roberty, S., Emonds-Alt, B., Larosa, V., Willamme, R., Thonart, P., Lack of isocitrate lyase in Chlamydomonas leads to changes in carbon metabolism and in the response to oxidative stress under mixotrophic growth (2014) Plant J., 77, pp. 404-417. , [CrossRef]
Lang, I., Hodac, L., Friedl, T., Feussner, I., Fatty acid profiles and their distribution patterns in microalgae: A comprehensive analysis of more than 2000 strains from the SAG culture collection (2011) BMC Plant Biol., 11, p. 124. , [CrossRef]
Knothe, G., Improving biodiesel fuel properties by modifying fatty ester composition (2009) Energy Environ. Sci., 2, pp. 759-766. , [CrossRef]
Ma, X.N., Chen, T.P., Yang, B., Liu, J., Chen, F., Lipid production from Nannochloropsis (2016) Mar. Drugs, 14, p. 61. , [CrossRef] [PubMed]
Zhou, W., Wang, H., Chen, L., Cheng, W., Liu, T., Heterotrophy of filamentous oleaginous microalgae Tribonema minus for potential production of lipid and palmitoleic acid (2017) Bioresour. Technol., 239, pp. 250-257. , [CrossRef]
Wang, H., Gao, L., Zhou, W., Liu, T., Growth and palmitoleic acid accumulation of filamentous oleaginous microalgae Tribonema minus at varying temperatures and light regimes (2016) Bioprocess Biosyst. Eng., 39, pp. 1589-1595. , [CrossRef]
Janssen, J.H., Wijffels, R.H., Barbosa, M.J., Lipid Production in Nannochloropsis gaditana during Nitrogen Starvation (2019) Biology, 8, p. 5. , [CrossRef]
Hedberg, A., Johansen, S.D., Nuclear group i introns in self-splicing and beyond (2013) Mob. DNA, 4, p. 17. , [CrossRef]
Corsaro, D., Köhsler, M., Venditti, D., Rott, M.B., Walochnik, J., Recovery of an Acanthamoeba strain with two group I introns in the nuclear 18S rRNA gene (2019) Eur. J. Protistol., 68, pp. 88-98. , [CrossRef]
Goddard, M.R., Burt, A., Recurrent invasion and extinction of a selfish gene (1999) Proc. Natl. Acad. Sci. USA, 96, pp. 13880-13885. , [CrossRef]
Besen, K.P., Melim, E.W.H., Da Cunha, L., Favaretto, E.D., Moreira, M., Fabregat, T.E.H.P., Lutein as a natural carotenoid source: Effect on growth, survival and skin pigmentation of goldfish juveniles (Carassius auratus) (2019) Aquac. Res., 50, pp. 2200-2206. , [CrossRef]
Thao, T.Y., Linh, D.T.N., Si, V.C., Carter, T.W., Hill, R.T., Isolation and selection of microalgal strains from natural water sources in Viet Nam with potential for edible oil production (2017) Mar. Drugs, 15, p. 194. , [CrossRef]
Corsaro, D., Venditti, D., Nuclear Group I introns with homing endonuclease genes in Acanthamoeba genotype T4 (2018) Eur. J. Protistol., 66, pp. 26-35. , [CrossRef] [PubMed]