[en] A coordinated regional climate model (RCM) evaluation and intercomparison project based on observations from a July–October 2014 trans‐Arctic Ocean field experiment (ACSE‐Arctic Clouds during Summer Experiment) is presented. Six state‐of‐the‐art RCMs were constrained with common reanalysis lateral boundary forcing and upper troposphere nudging techniques to explore how the RCMs represented the evolution of the surface energy budget (SEB) components and their relation to cloud properties. We find that the main reasons for the modeled differences in the SEB components are a direct consequence of the RCM treatment of cloud and cloud‐radiative interactions. The RCMs could be separated into groups by their overestimation or underestimation of cloud liquid. While radiative and turbulent heat flux errors were relatively large, they often invoke compensating errors. In addition, having the surface sea‐ice concentrations constrained by the reanalysis or satellite observations limited how errors in the modeled radiative fluxes could affect the SEB and ultimately the surface evolution and its coupling with lower tropospheric mixing and cloud properties. Many of these results are consistent with RCM biases reported in studies over a decade ago. One of the six models was a fully coupled ocean‐ice‐atmosphere model. Despite the biases in overestimating cloud liquid, and associated SEB errors due to too optically thick clouds, its simulations were useful in understanding how the fully coupled system is forced by, and responds to, the SEB evolution. Moving forward, we suggest that development of RCM studies need to consider the fully coupled climate system.
Research Center/Unit :
Sphères - SPHERES
Disciplines :
Earth sciences & physical geography
Author, co-author :
Sedlar, Joseph
Tjernström, Michael
Rinke, Annette
Orr, Andrew
Cassano, John
Fettweis, Xavier ; Université de Liège - ULiège > Département de géographie > Climatologie et Topoclimatologie
Heinemann, Günther
Seefeldt, Mark
Solomon, Ay
Matthes, Heidrun
Phillips, Tony
Webster, Stuart
Language :
English
Title :
Confronting Arctic Troposphere, Clouds, and Surface Energy Budget Representations in Regional Climate Models With Observations
Publication date :
12 March 2020
Journal title :
Journal of Geophysical Research. Atmospheres
ISSN :
2169-897X
eISSN :
2169-8996
Publisher :
Wiley, Hoboken, United States - New Jersey
Volume :
125
Peer reviewed :
Peer Reviewed verified by ORBi
Tags :
CÉCI : Consortium des Équipements de Calcul Intensif
Akperov, M., Rinke, A., Mokhov, I. I., Matthes, H., Semenov, V. A., Adakudlu, M., Cassano, J., Christensen, J. H., Dembitskaya, M. A., Dethloff, K., Fettweis, X., Glisan, J., Gutjahr, O., Heinemann, G., Koenigk, T., Koldunov, N. V., Laprise, R., Mottram, R., Nikiéma, O., Scinocca, J. F., Sein, D., Sobolowski, S., Winger, K., & Zhang, W. (2018). Cyclone activity in the Arctic from an ensemble of regional climate models (Arctic CORDEX). Journal of Geophysical Research: Atmospheres, 123, 2537–2554. https://doi.org/10.1002/2017JD027703
AMAP: Snow, Water, Ice and Permafrost in the Arctic (SWIPA) 2017. (2017), Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, xiv + 269 pp.
Andreas, E. L., Persson, P. O. G., Jordan, R. E., Horst, T. W., Guest, P. S., Grachev, A. A., & Fairall, C. W. (2010). Parameterizing turbulent exchange over sea ice in winter. Journal of Hydrometeorology, 11, 87–104. https://doi.org/10.1175/2009JHM1102.1
Berg, P., Döscher, R., & Koenigk, T. (2013). Impacts of using spectral nudging on regional climate model RCA4 simulations of the Arctic. Geoscientific Model Development, 6, 849–859. https://doi.org/10.5194/gmd-6-849-2013
Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R. L. H., Ménard, C. B., Edwards, J. M., Hendry, M. A., Porson, A., Gedney, N., Mercado, L. M., Sitch, S., Blyth, E., Boucher, O., Cox, P. M., Grimmond, C. S. B., & Harding, R. J. (2011). The Joint UK Land Environment Simulator (JULES), model description—Part 1: Energy and water fluxes. Geoscientific Model Development, 4(3), 677–699. https://doi.org/10.5194/gmd-4-677-2011
Brinkop, S., & Roeckner, E. (1995). Sensitivity of a general circulation model to parameterizations of cloud-turbulence interactions in the atmospheric boundary layer. Tellus A, 47, 197–220.
Brooks, I. M., Tjernström, M., Persson, P. O. G., Shupe, M. D., Atkinson, R. A., Canut, G., Birch, C. E., Mauritsen, T., Sedlar, J., & Brooks, B. J. (2017). The turbulent structure of the Arctic summer boundary layer during the Arctic summer cloud-ocean study. Journal of Geophysical Research: Atmospheres, 122, 9685–9704. https://doi.org/10.1002/2017JD027234
Cassano, J. J., DuVivier, A., Roberts, A., Hughes, M., Seefeldt, M., Brunke, M., Craig, A., Fisel, B., Gutowski, W., Hamman, J., Higgins, M., Maslowski, W., Nijssen, B., Osinski, R., & Zeng, X. (2017). Development of the Regional Arctic System Model (RASM): near-surface atmospheric climate sensitivity. Journal of Climate, 30(15), 5729–5753. https://doi.org/10.1175/JCLI-D-15-0775.1
Christensen, O. B., Drews, M., Christensen, J. H., Dethloff, K., Ketelsen, K., Hebestadt, I., & Rinke, A. (2007). The HIRHAM Regional Climate Model Version 5 (b); DMI technical report 06–17 (p. 22). Copenhagen, Denmark: Danish Meteorological Institute.
Curry, J. A., & Lynch, A. H. (2002). Comparing Arctic regional climate model. Eos, 83, 87.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J. J., Park, B. K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J. N., & Vitart, F. (2011). The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137(656), 553–597. https://doi.org/10.1002/qj.828
Doms, G., Förstner, J., Heise, E., Herzog, H. J., Rahsendorfer, M., Reinhardt, T., Ritter, B., Schrodin, R., Schulz, J. P., & Vogel, G. (2011). A description of the non-hydrostatic regional model LM. Part II: Physical parameterization, core documentation. Consortium for small-scale modelling. http://www.cosmo-model.org.
Duynkerke, P. G. (1988). Application of the E-turbulence closure model to the neutral and stable atmospheric boundary layer. Journal of the Atmospheric Sciences, 45(5), 865–880.
Fettweis, X., Box, J. E., Agosta, C., Amory, C., Kittel, C., Lang, C., van As, D., Machguth, H., & Gallèe, H. (2017). Reconstructions of the 1900-2015 Greenland ice sheet surface mass balance using the regional climate MAR model. The Cryosphere, 11, 1015–1033. https://doi.org/10.5194/tc-11-1015-2017
Furtado, K., & Field, P. (2017). The role of ice microphysics parameterizations in determining the prevalence of supercooled liquid water in high-resolution simulations of a southern ocean midlatitude cyclone. Journal of the Atmospheric Sciences, 75, 2001–2021. https://doi.org/10.1175/JAS-D-16-0165.1
Gallèe, H., Guyomarch, G., & Brun, E. (2001). Impact of snow drift on the Antarctic ice sheet surface mass balance: Possible sensitivity to snow-surface properties. Boundary-Layer Meteorology, 99, 1. https://doi.org/10.1023/A:1018776422809
Garrett, T. J., Radke, L. F., & Hobbs, P. V. (2002). Aerosol effects on cloud emissivity and surface longwave heating in the Arctic. Journal of the Atmospheric Sciences, 59, 769–778.
Garrett, T. J., & Zhao, C. (2006). Increased Arctic cloud longwave emissivity associated with pollution from mid-latitudes. Nature, 440(7085), 787–789. https://doi.org/10.1038/nature04636
Giorgi, F., Jones, C., & Asrar, G. R. (2009). Addressing climate information needs at the regional level: The CORDEX framework. WMO Bulletin, 58(3), 175–183.
Gutjahr, O., & Heinemann, G. (2018). A model-based comparison of extreme winds in the Arctic and around Greenland. International Journal of Climatology, 38, 5272–5292. https://doi.org/10.1002/joc.5729
Hersbach, H. et al. (2018), Operational global reanalysis: progress, future directions and synergies with NWP, ERA Report Series, https://doi.org/10.21957/tkic6g3wm.
Hong, S.-Y., Noh, Y., & Dudhia, J. (2006). A new vertical diffusion package with an explicit treatment of entrainment processes. Monthly Weather Review, 134, 2318–2341.
Illingworth, A. J., Hogan, R. J., O'Connor, E. J., Bouniol, D., Brooks, M. E., Delanoé, J., Donovan, D. P., Eastment, J. D., Gaussiat, N., Goddard, J. W. F., Haeffelin, M., Baltink, H. K., Krasnov, O. A., Pelon, J., Piriou, J. M., Protat, A., Russchenberg, H. W. J., Seifert, A., Tompkins, A. M., van Zadelhoff, G. J., Vinit, F., Willén, U., Wilson, D. R., & Wrench, C. L. (2007). Cloudnet: Continuous evaluation of cloud profiles din seven operational models using ground-based observations. Bulletin of the American Meteorological Society, 88(6), 883–898. https://doi.org/10.1175/BAMS-88-6-883
Inoue, J., Liu, J., Pinto, J. O., & Curry, J. A. (2006). Intercomparison of Arctic regional climate models: Modeling clouds and radiation for SHEBA in may 1998. Journal of Climate, 19, 4167–4178.
Intrieri, J. M., Fairall, C. W., Shupe, M. D., Persson, P. O. G., Andreas, E. L., Guest, P. S., & Moritz, R. E. (2002). An annual cycle of Arctic surface cloud forcing at SHEBA. Journal of Geophysical Research, 107(C10), 8039. https://doi.org/10.1029/2000JC000439
Jiménez, P. A., Dudhia, J., Fidel Gonzàlez-Rouco, J., Navarro, J., Montàvez, J. P., & Garcìa-Bustamante, E. (2012). A revised scheme for the WRF surface layer formulation. Monthly Weather Review, 140, 898–918. https://doi.org/10.1175/MWR-D-11-00056.1
Klaus, D., Dethloff, K., Dorn, W., Rinke, A., & Wu, D. L. (2016). New insight of Arctic cloud parameterization from regional climate model simulations, satellite-based, and drifting station data. Geophysical Research Letters, 43, 5450–5459. https://doi.org/10.1002/2015GL067530
Klein, S. A., McCoy, R. B., Morrison, H., Ackerman, A. S., Avramov, A., Boer, G., Chen, M., Cole, J. N. S., del Genio, A. D., Falk, M., Foster, M. J., Fridlind, A., Golaz, J. C., Hashino, T., Harrington, J. Y., Hoose, C., Khairoutdinov, M. F., Larson, V. E., Liu, X., Luo, Y., McFarquhar, G. M., Menon, S., Neggers, R. A. J., Park, S., Poellot, M. R., Schmidt, J. M., Sednev, I., Shipway, B. J., Shupe, M. D., Spangenberg, D. A., Sud, Y. C., Turner, D. D., Veron, D. E., Salzen, K., Walker, G. K., Wang, Z., Wolf, A. B., Xie, S., Xu, K. M., Yang, F., & Zhang, G. (2009). Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. I: Single-layer cloud. Quarterly Journal of the Royal Meteorological Society, 135(641), 979–1002. https://doi.org/10.1002/qj.416
Kohnemann, S., Heinemann, G., Bromwich, D., & Gutjahr, O. (2017). Extreme warming in the Kara Sea and Barents Sea during the winter period 2000 to 2016. Journal of Climate, 30, 8913–8927. https://doi.org/10.1175/JCLI-D-16-0693.1
Lock, A. P., Brown, A. R., Bush, M. R., Martin, G. M., & Smith, R. N. B. (2000). A new boundary-layer mixing scheme. 1. Scheme description and single-column model tests. Monthly Weather Review, 128, 3187–3199.
Louis, J.-F. (1979). A parametric model of vertical eddy fluxes in the atmosphere. Boundary-Layer Meteorology, 17, 187–202.
Lubin, D., & Vogelmann, A. M. (2006). A climatologically significant aerosol longwave indirect effect in the Arctic. Nature, 439(7075), 453–456. https://doi.org/10.1038/nature04449
Mellor, G. L., & Yamada, T. (1974). A hierarchy of turbulence closure models for planetary boundary layers. Journal of the Atmospheric Sciences, 31, 1791–1806.
Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., & Clough, S. A. (1997). Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. Journal of Geophysical Research, 102(D14), 16,663–16,682.
Moat, B. I., Yelland, M. J., & Brooks, I. M. (2015). Airflow distortion at instrument sites on the ODEN during the ACSE project, National Oceanography Centre, 114 pp., (National Oceanography Centre Internal Document, 17), Southampton, GB.
Morrison, H., Thompson, G., & Tatarskii, V. (2009). Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Monthly Weather Review, 137, 991–1007. https://doi.org/10.1175/2008MWR2556.1
Nakanishi, M., & Niino, H. (2006). An improved Mellor-Yamada level-3 model: Its numerical stability and application to a regional prediction of advection fog. Boundary-Layer Meteorology, 119, 397–407. https://doi.org/10.1007/s10546-005-9030-8
Orr, A., Phillips, T., Webster, S., Elvidge, A., Weeks, M., Hosking, S., & Turner, J. (2014). Met Office Unified Model high-resolution simulations of a strong wind event in Antarctica. Quarterly Journal of the Royal Meteorological Society, 140, 2287–2297. https://doi.org/10.1002/qj.2296
Persson, P. O. G. (2012). Onset and end of the summer melt season over sea ice: Thermal structure and surface energy perspective from SHEBA. Climate Dynamics, 39(6), 1349–1371. https://doi.org/10.1007/s00382-011-1196-9
Persson, P. O. G., Fairall, C. W., Andreas, E. L., Guest, P. S., & Perovich, D. K. (2002). Measurements near the atmospheric surface flux group tower at SHEBA: Near-surface conditions and surface energy budget. Journal of Geophysical Research, 107(C10), 8045. https://doi.org/10.1029/2000JC000705
Persson, P. O. G., Shupe, M. D., Perovich, D., & Solomon, A. (2017). Linking atmospheric synoptic transport, cloud phase, surface energy fluxes, and sea-ice growth: Observations of midwinter SHEBA conditions. Climate Dynamics, 49(4), 1341–1364. https://doi.org/10.1007/s00382-016-3383-1
Powers, J. G., Klemp, J. B., Skamarock, W. C., Davis, C. A., Dudhia, J., Gill, D. O., Coen, J. L., Gochis, D. J., Ahmadov, R., Peckham, S. E., Grell, G. A., Michalakes, J., Trahan, S., Benjamin, S. G., Alexander, C. R., Dimego, G. J., Wang, W., Schwartz, C. S., Romine, G. S., Liu, Z., Snyder, C., Chen, F., Barlage, M. J., Yu, W., & Duda, M. G. (2017). The Weather Research and Forecasting model. Overview, system efforts and future directions. Bulletin of the American Meteorological Society, 98(8), 1717–1737. https://doi.org/10.1175/BAMS-D-15-00308.1
Prytherch, J., Yelland, M. J., Brooks, I. M., Tupman, D. J., Pascal, R. W., Moat, B. I., & Norris, S. J. (2015). Motion-correlated flow distortion and wave-induced biases in air-sea flux measurements from ships. Atmospheric Chemistry and Physics, 15, 10,619–10,629. https://doi.org/10.5194/acp-15-10619-2015
Rinke, A., Dethloff, K., Cassano, J. J., Christensen, J. H., Curry, J. A., Du, P., Girard, E., Haugen, J. E., Jacob, D., Jones, C. G., Køltzow, M., Laprise, R., Lynch, A. H., Pfeifer, S., Serreze, M. C., Shaw, M. J., Tjernström, M., Wyser, K., & Žagar, M. (2006). Evaluation of an ensemble of Arctic regional climate models: Spatiotemporal fields during the SHEBA year. Climate Dynamics, 26(5), 459–472. https://doi.org/10.1007/s00382-005-0095-3
Rinke, A., Lynch, A. H., & Dethloff, K. (2000). Intercomparison of Arctic regional climate simulations: Case studies of January and June 1990. Journal of Geophysical Research, 105(D24), 29,669–29,683.
Ritter, B., & Geleyn, J.-F. (1992). A comprehensive radiation scheme for numerical weather prediction models with potential applications in climate simulations. Monthly Weather Review, 120, 303–325.
Schröder, D., Heinemann, G., & Willmes, S. (2011). The impact of a thermodynamic sea-cie module in the COSMO numerical weather prediction module on simulations for the Laptev Sea, Siberian Arctic. Polar Research, 30(6334).
Sedlar, J. (2020). Meteorological observations during the SWERUS-C3 Arctic Ocean expedition 2014 and colocated regional climate model output. Dataset version 1.0. Bolin Centre database. https://doi.org/10.17043/swerus-2014-rcm-metobs
Sedlar, J., & Shupe, M. D. (2014). Characteristic nature of vertical motions observed in Arctic mixed-phase stratocumulus. Atmospheric Chemistry and Physics, 14, 3461–3478. https://doi.org/10.5194/acp-14-3461-2014
Sedlar, J., Shupe, M. D., & Tjernström, M. (2012). On the relationship between thermodynamic structure and cloud top, and its climate significance in the Arctic. Journal of Climate, 25, 2374–2393. https://doi.org/10.1175/JCLI-D-11-00186.1
Sedlar, J., & Tjernström, M. (2017). Clouds, warm air, and a climate cooling signal over the summer Arctic. Geophysical Research Letters, 44, 1095–1103. https://doi.org/10.1002/2016GL071959
Sedlar, J., Tjernström, M., Mauritsen, T., Shupe, M. D., Brooks, I. M., Persson, P. O. G., Birch, C. E., Leck, C., Sirevaag, A., & Nicolaus, M. (2011). A transitioning Arctic surface energy budget: The impacts of solar zenith angle, surface albedo and cloud radiative forcing. Climate Dynamics, 37(7-8), 1643–1660. https://doi.org/10.1007/s00382-010-0937-5
Shupe, M. D., & Intrieri, J. M. (2004). Cloud radiative forcing of the Arctic surface: The influence of cloud properties, surface albedo, and solar zenith angle. Journal of Climate, 17, 616–628.
Shupe, M. D., Kollias, P., Matrosov, S. Y., & Schneider, T. L. (2004). Deriving mixed-phase cloud properties from Doppler radar spectra. Journal of Atmospheric and Oceanic Technology, 21, 660–670.
Shupe, M. D., Kollias, P., Persson, P. O. G., & McFarquhar, G. M. (2008). Vertical motions in Arctic mixed-phase stratiform clouds. Journal of the Atmospheric Sciences, 65, 1304–1322. https://doi.org/10.1175/2007JAS2479.1
Shupe, M. D., Persson, P. O. G., Brooks, I. M., Tjernström, M., Sedlar, J., Mauritsen, T., Sjogren, S., & Leck, C. (2013). Cloud and boundary layer interactions over the Arctic sea ice in late summer. Atmospheric Chemistry and Physics, 13, 9379–9400. https://doi.org/10.5194/acp-13-9379-2013
Skamarock, W. C.,, Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Duda, M. G., Huang, X-Y., Wang, W., & Powers, J. G. (2008). A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-4751STR (113 pp.). https://doi.org/10.5065/D68S4MVH
Sommerfeld, A., Nikiema, O., Rinke, A., Dethloff, K., & Laprise, R. (2015). Arctic budget study of inter-member variability using HIRHAM5 ensemble simulation. Journal of Geophysical Research: Atmospheres, 120, 9390–9407. https://doi.org/10.1002/2015JD023153
Sotiropoulou, G., Sedlar, J., Tjernström, M., Shupe, M. D., Brooks, I. M., & Persson, P. O. G. (2014). The thermodynamic structure of summer Arctic stratocumulus and the dynamic coupling to the surface. Atmospheric Chemistry and Physics, 14, 12,573–12,592. https://doi.org/10.5194/acp-14-12573-2014
Sotiropoulou, G., Tjernström, M., Sedlar, J., Achtert, P., Brooks, B. J., Brooks, I. M., Persson, P. O. G., Prytherch, J., Salisbury, D. J., Shupe, M. D., Johnston, P. E., & Wolfe, D. (2016). Atmospheric Conditions during the Arctic Clouds in Summer Experiment (ACSE): Contrasting open water and sea ice surfaces during melt and freeze-up seasons. Journal of Climate, 29(24), 8721–8744. https://doi.org/10.1175/JCLI-D-16-0211.1
Stephens, G. L. (1978). Radiation profiles in extended water clouds. II: Parameterization schemes. Journal of the Atmospheric Sciences, 35, 2123–2132.
Sundqvist, H., Berge, E., & Kristjánsson, J. E. (1989). Condensation and cloud parameterization studies with a mesoscale numerical weather prediction model. Monthly Weather Review, 117, 1641–1657.
Tjernström, M., Birch, C. E., Brooks, I. M., Shupe, M. D., Persson, P. O. G., Sedlar, J., Mauritsen, T., Leck, C., Paatero, J., Szczodrak, M., & Wheeler, C. R. (2012). Meteorological conditions in the central Arctic summer during the Arctic Summer Cloud Ocean Study (ASCOS). Atmospheric Chemistry and Physics, 12, 6863–6889. https://doi.org/10.5194/acp-12-6863-2012
Tjernström, M., Leck, C., Persson, P. O. G., Jensen, M. L., Oncley, S. P., & Targino, A. (2004). The summertime Arctic atmosphere. Meteorological measurements during the Arctic Ocean Experiment 2001. Bulletin of the American Meteorological Society, 85, 1305–1322. https://doi.org/10.1175/BAMS-85-9-1305
Tjernström, M., Sedlar, J., & Shupe, M. D. (2008). How well do regional climate models reproduce radiation and clouds in the Arctic? An evaluation of ARCMIP simulations. Journal of Applied Meteorology and Climatology, 47, 2405–2422. https://doi.org/10.1175/2008JAMC1845.1
Tjernström, M., Shupe, M. D., Brooks, I. M., Achtert, P., Prytherch, J., & Sedlar, J. (2019). Arctic summer airmass transformation, surface inversions, and the surface energy budget. Journal of Climate, 32, 769–789. https://doi.org/10.1175/JCLI-D-0216.1
Tjernström, M., Shupe, M. D., Brooks, I. M., Persson, P. O. G., Prytherch, J., Salisbury, D. J., Sedlar, J., Achtert, P., Brooks, B. J., Johnston, P. E., Sotiropoulou, G., & Wolfe, D. (2015). Warm-air advection, air mass transformation and fog causes rapid ice melt. Geophysical Research Letters, 42(13), 5594–5602. https://doi.org/10.1002/2015GL064373
Tjernström, M., Žagar, M., Svensson, G., Cassano, J. J., Pfeifer, S., Rinke, A., Wyser, K., Dethloff, K., Jones, C., Semmler, T., & Shaw, M. (2005). Modelling the Arctic boundary layer: An evaluation of six ARCMIP regional-scale models using data from the SHEBA project. Boundary-Layer Meteorology, 117(2), 337–381. https://doi.org/10.1007/s10546-004-7954-z
Tompkins, A. M. (2002). A prognostic parameterization for the subgrid-scale variability of water vapor and clouds in large-scale models and its use to diagnose cloud cover. Journal of the Atmospheric Sciences, 59, 1917–1942.
Uttal, T., Curry, J. A., Mcphee, M. G., Perovich, D. K., Moritz, R. E., Maslanik, J. A., Guest, P. S., Stern, H. L., Moore, J. A., Turenne, R., Heiberg, A., Serreze, M. C., Wylie, D. P., Persson, O. G., Paulson, C. A., Halle, C., Morison, J. H., Wheeler, P. A., Makshtas, A., Welch, H., Shupe, M. D., Intrieri, J. M., Stamnes, K., Lindsey, R. W., Pinkel, R., Pegau, W. S., Stanton, T. P., & Grenfeld, T. C. (2002). Surface heat budget of the Arctic Ocean. Bulletin of the American Meteorological Society, 83(2), 255–275. https://doi.org/10.1175/1520-0477(2002)083<0255:SHBOTA>2.3.CO;2
Vaughan, D. G., et al. (2013). Observations: Cryosphere. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Chap. 4, pp. 317–382). Cambridge, UK and New York, NY: Cambridge University Press.
Walters, D., Boutle, I., Brooks, M., Melvin, T., Stratton, R., Vosper, S., Wells, H., Williams, K., Wood, N., Allen, T., Bushell, A., Copsey, D., Earnshaw, P., Edwards, J., Gross, M., Hardiman, S., Harris, C., Heming, J., Klingaman, N., Levine, R., Manners, J., Martin, G., Milton, S., Mittermaier, M., Morcrette, C., Riddick, T., Roberts, M., Sanchez, C., Selwood, P., Stirling, A., Smith, C., Suri, D., Tennant, W., Vidale, P. L., Wilkinson, J., Willett, M., Woolnough, S., & Xavier, P. (2017). The Met Office Unified Model Global Atmosphere 6.0/6.1 and JULES Global Land 6.0/6.1 configurations. Geoscientific Model Development, 10(4), 1487–1520. https://doi.org/10.5194/gmd-10-1487-2017
Westwater, E. R., Han, Y., Shupe, M. D., & Matrosov, S. Y. (2001). Analysis of integrated cloud liquid and precipitable water vapor retrievals from microwave radiometers during the surface heat budget of the Arctic Ocean Project. Journal of Geophysical Research, 106(D23), 32,019–32,030.
Wilson, D. R., & Ballard, S. P. (1999). A microphyiscally based precipitation scheme for the UK Meteorological Office Unified Model. Quarterly Journal of the Royal Meteorological Society, 125, 1607–1639.
Wilson, D. R., Bushell, A. C., Kerr-Munslow, A. M., Price, J. D., & Morcrette, C. J. (2008). PC2: A prognostic cloud fraction and condensation scheme. I: Scheme description. Quarterly Journal of the Royal Meteorological Society, 134, 2093–2107. https://doi.org/10.1002/qj.333
Wood, R., & Bretherton, C. S. (2006). On the relationship between stratiform low cloud cover and lower-tropospheric stability. Journal of Climate, 19, 6425–6432.
Wyser, K., Jones, C. G., du, P., Girard, E., Willén, U., Cassano, J., Christensen, J. H., Curry, J. A., Dethloff, K., Haugen, J. E., Jacob, D., Køltzow, M., Laprise, R., Lynch, A., Pfeifer, S., Rinke, A., Serreze, M., Shaw, M. J., Tjernström, M., & Zagar, M. (2008). An evaluation of Arctic cloud and radiation processes during the SHEBA year: simulation results from eight Arctic regional climate models. Climate Dynamics, 30(2-3), 203–223. https://doi.org/10.1007/s00382-007-0286-1
Zhang, J., & Rothrock, D. A. (2003). Modeling Global Sea ice with a thickness and enthalpy distribution model in generalized curvilinear coordinates. Monthly Weather Review, 131, 845–861.