LOVINFOSSE, Pierre ; Centre Hospitalier Universitaire de Liège - CHU > Département de Physique Médicale > Service médical de médecine nucléaire et imagerie onco
Rousseau, Caroline; Nuclear Medicine Department, West Cancer Institut (ICO), René Gauducheau Centre, Saint Herblain, France
Pierga, Jean-Yves; Nuclear Medicine Department, Curie Institut, Paris, France
Bouchet, Francis; Nuclear Medicine Department and Inserm UMR_S 1066 MINT, University of Angers, Angers, France
Cochet, Alexandre; Nuclear Medicine Department, Georges-François Leclerc Centre, Dijon, France
Alberini, Jean-Louis; Nuclear Medicine Department, Curie Institut, Saint-Cloud, France
Girault, Sylvie; Nuclear Medicine Department, West Cancer Institut (ICO), Paul Papin Centre, Angers, France
Vera, Pierre; Nuclear Medicine Department, Henri Becquerel Centre, Rouen, France
Olivier, Pierre; Nuclear Medicine Department, University of Nancy, Nancy, France
Uwer, Lionel; Nuclear Medicine Department, Institut de cancerologie de lorraine, Vandoeuvre-les-, Nancy, France
Cachin, Florent; Nuclear Medicine Department, Jean Perrin Center, Clermont Ferrand, France
Scarwell, Benoit; Nuclear Medicine Department, Centre Hospitalier de la Cote Basque, Bayonne, France
Lemonnier, Jérome; UniCancer R&D, Paris, France
Fourme, Emmanuel; Nuclear Medicine Department, Curie Institut, Saint-Cloud, France
Mesleard, Christelle; UniCancer R&D, Paris, France
Martin, Anne-Laure; UniCancer R&D, Paris, France
Lacœuille, Franck; Nuclear Medicine Department and Inserm UMR_S 1066 MINT, University of Angers, Angers, France
Couturier, Olivier-François; Nuclear Medicine Department and Inserm UMR_S 1066 MINT, University of Angers, Angers, France
Gallagher BM, Ansari A, Atkins H, Casella V, Christman DR, Fowler JS, et al. Radiopharmaceuticals XXVII. 18F-labeled 2-deoxy-2-fluoro-d-glucose as a radiopharmaceutical for measuring regional myocardial glucose metabolism in vivo: tissue distribution and imaging studies in animals. J Nucl Med. 1977;18:990–6.
Cheng G, Torigian DA, Zhuang H, Alavi A. When should we recommend use of dual time-point and delayed time-point imaging techniques in FDG PET. Eur J Nucl Med Mol Imaging. 2013;40:779–87.
Couturier OO, Luxen AA, Chatal J-FJ, Vuillez J-PJ, Rigo PP, Hustinx RR. Fluorinated tracers for imaging cancer with positron emission tomography. Eur J Nucl Med Mol Imaging. 2004;31:1182–206.
Salskov A, Tammisetti VS, Grierson J, Vesselle H. FLT: Measuring tumor cell proliferation in vivo with positron emission tomography and 3′-deoxy-3′-[18F]fluorothymidine. Semin Nucl Med. 2007;37:429–39.
Romain S, Martin P-M, Klijn JGM, van Putten WLJ, Look MP, Guirou O, et al. DNA-synthesis enzyme activity: a biological tool useful for predicting anti-metabolic drug sensitivity in breast cancer? International Journal of Cancer. Wiley-Blackwell. 1997;74:156–61.
Sakamoto S, Kuwa K, Tsukada K, Sagara T, Noriyuki K, Okamoto R. Relative activities of thymidylate synthetase and thymidine kinase in 1,2-dimethyihydrazine-induced colon carcinomas in rats. Carcinogenesis. 1987;8:405–8.
Smyczek-Gargya B, Fersis N, Dittmann H, Vogel U, Reischl G, Machulla H-J, et al. PET with [18F]fluorothymidine for imaging of primary breast cancer: a pilot study. Eur J Nucl Med Mol Imaging. 2004;31:720–4.
Buck AK, Schirrmeister H, Mattfeldt T, Reske SN. Biological characterisation of breast cancer by means of PET. Springer-Verlag. 2004;31:S80–7.
Seitz U, Wagner M, Neumaier B, Wawra E, Glatting G, Leder G, et al. Evaluation of pyrimidine metabolising enzymes and in vitro uptake of 3“-[18F]fluoro-3-”deoxythymidine ([18F]FLT) in pancreatic cancer cell lines. Eur J Nucl Med Mol Imaging. 2002;29:1174–81.
Grierson JR, Schwartz JL, Muzi M, Jordan R, Krohn KA. Metabolism of 3′-deoxy-3′-[F-18]fluorothymidine in proliferating A549 cells: Validations for positron emission tomography. Nucl. Med. Biol. 2004;31:829–37.
Kenny LM, Vigushin DM, Al-Nahhas A, Osman S, Luthra SK, Shousha S, et al. Quantification of cellular proliferation in tumor and normal tissues of patients with breast cancer by [18F]fluorothymidine-positron emission tomography imaging: evaluation of analytical methods. Cancer Res. 2005;65:10104–12.
Pio BS, Park CK, Pietras R, Hsueh W-A, Satyamurthy N, Pegram MD, et al. Usefulness of 3“-[F-18]fluoro-3-”deoxythymidine with positron emission tomography in predicting breast cancer response to therapy. Mol Imaging Biol. 2006;8:36–42.
Zhang J, Liu X, Knopp MI, Ramaswamy B, Knopp MV. How Long of a Dynamic 3“-Deoxy-3-”[18F]fluorothymidine ([18F]FLT) PET acquisition is needed for robust kinetic analysis in breast cancer? Mol Imaging Biol. Springer International Publishing. 2019;21:382–90.
Kenny L, Coombes RC, Vigushin DM, Al-Nahhas A, Shousha S, Aboagye EO. Imaging early changes in proliferation at 1 week post chemotherapy: a pilot study in breast cancer patients with 3“-deoxy-3-”[18F]fluorothymidine positron emission tomography. Eur J Nucl Med Mol Imaging. 2007;34:1339–47.
Buck AK, Halter G, Schirrmeister H, Kotzerke J, Wurziger I, Glatting G, et al. Imaging proliferation in lung tumors with PET: 18F-FLT versus 18F-FDG. J Nucl Med. 2003;44:1426–31.
Buck AK, Schirrmeister H, Hetzel M, Heide Von Der M, Halter G, Glatting G, et al. 3-deoxy-3-[(18)F]fluorothymidine-positron emission tomography for noninvasive assessment of proliferation in pulmonary nodules. Cancer Res. 2002;62:3331–4.
Dittmann H, Dohmen BM, Paulsen F, Eichhorn K, Eschmann SM, Horger M, et al. [18 F]FLT PET for diagnosis and staging of thoracic tumours. Springer-Verlag. 2003;30:1407–12.
Buck AK, Bommer M, Stilgenbauer S, Juweid M, Glatting G, Schirrmeister H, et al. Molecular imaging of proliferation in malignant lymphoma. Cancer Res. 2006;66:11055–61.
Francis DL. In vivo imaging of cellular proliferation in colorectal cancer using positron emission tomography. Gut. 2003;52:1602–6.
Chen W, Cloughesy T, Kamdar N, Satyamurthy N, Bergsneider M, Liau L, et al. Imaging proliferation in brain tumors with 18F-FLT PET: comparison with 18F-FDG. J Nucl Med. 2005;46:945–52.
Choi SJ, Kim JS, Kim JH, Oh SJ, Lee JG, Kim CJ, et al. [18F]3′-deoxy-3′-fluorothymidine PET for the diagnosis and grading of brain tumors. Springer-Verlag. 2005;32:653–9.
Cobben DCP. Detection and grading of soft tissue sarcomas of the extremities with 18F-3“-fluoro-3-”deoxy-L-thymidine. Clin. Cancer Res. 2004;10:1685–90.
van Westreenen HL, Cobben DCP, Jager PL, van Dullemen HM, Wesseling J, Elsinga PH, et al. Comparison of 18F-FLT PET and 18F-FDG PET in esophageal cancer. J Nucl Med. 2005;46:400–4.
Yap CS, Czernin J, Fishbein MC, Cameron RB, Schiepers C, Phelps ME, et al. Evaluation of thoracic tumors with 18F-fluorothymidine and 18F-fluorodeoxyglucose-positron emission tomography. Chest. 2006;129:393–401.
Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: Evolving Considerations for PET response criteria in solid tumors. J Nucl Med. 2009;50(Suppl 1):122S–50S.
Hustinx R, Smith RJ, Benard F, Rosenthal DI, Machtay M, Farber LA, et al. Dual time point fluorine-18 fluorodeoxyglucose positron emission tomography: a potential method to differentiate malignancy from inflammation and normal tissue in the head and neck. Eur J Nucl Med. 1999;26:1345–8.
Matthies A, Hickeson M, Cuchiara A, Alavi A. Dual time point 18F-FDG PET for the evaluation of pulmonary nodules. J Nucl Med. 2002;43:871–5.
Alkhawaldeh K, Bural G, Kumar R, Alavi A. Impact of dual-time-point (18)F-FDG PET imaging and partial volume correction in the assessment of solitary pulmonary nodules. Eur J Nucl Med Mol Imaging. 2008;35:246–52.
Schillaci O, Travascio L, Bolacchi F, Calabria F, Bruni C, Cicciò C, et al. Accuracy of early and delayed FDG PET-CT and of contrast-enhanced CT in the evaluation of lung nodules: a preliminary study on 30 patients. Radiol Med. 2009;114:890–906.
Macdonald K, Searle J, Lyburn I. The role of dual time point FDG PET imaging in the evaluation of solitary pulmonary nodules with an initial standard uptake value less than 2.5. Clin Radiol. 2011;66:244–50.
Chen C-J, Lee B-F, Yao W-J, Cheng L, Wu P-S, Chu CL, et al. Dual-phase 18F-FDG PET in the diagnosis of pulmonary nodules with an initial standard uptake value less than 2.5. AJR Am J Roentgenol. 2008;191:475–9.
Barger RL, Nandalur KR. Diagnostic performance of dual-time 18F-FDG PET in the diagnosis of pulmonary nodules: a meta-analysis. Acad Radiol. 2012;19:153–8.
Gould MK, Maclean CC, Kuschner WG, Rydzak CE, Owens DK. Accuracy of positron emission tomography for diagnosis of pulmonary nodules and mass lesions. JAMA. 2001;285:914.
Kumar R, Loving VA, Chauhan A, Zhuang H, Mitchell S, Alavi A. Potential of dual-time-point imaging to improve breast cancer diagnosis with (18)F-FDG PET. J Nucl Med. 2005;46:1819–24.
Imbriaco M, Caprio MG, Limite G, Pace L, De Falco T, Capuano E, et al. Dual-time-point 18F-FDG PET/CT versus dynamic breast MRI of suspicious breast lesions. AJR Am J Roentgenol. 2008;191:1323–30.
Caprio MG, Cangiano A, Imbriaco M, Soscia F, Di Martino G, Farina A, et al. Dual-time-point [18F]-FDG PET/CT in the diagnostic evaluation of suspicious breast lesions. Radiol Med. 2010;115:215–24.
Zytoon AA, Murakami K, El-Kholy MR, El-Shorbagy E, Ebied O. Breast cancer with low FDG uptake: characterization by means of dual-time point FDG-PET/CT. Eur J Radiol. 2009;70:530–8.
Hahn S, Hecktor J, Grabellus F, Hartung V, Pöppel T, Kimmig R, et al. Diagnostic accuracy of dual-time-point 18F-FDG PET/CT for the detection of axillary lymph node metastases in breast cancer patients. Acta Radiol. 2012;53:518–23.
Choi WH, Yoo IR. O JH, Kim SH, Chung SK. The value of dual-time-point 18F-FDG PET/CT for identifying axillary lymph node metastasis in breast cancer patients. Br J Radiol. 2011;84:593–9.
Koolen BB, Pengel KE, Wesseling J, Vogel WV, Vrancken Peeters M-JTFD, Vincent AD, et al. FDG PET/CT during neoadjuvant chemotherapy may predict response in ER-positive/HER2-negative and triple negative, but not in HER2-positive breast cancer. Breast. 2013;22:691–7.
van Kruchten M, Glaudemans AWJM, de Vries EFJ, Beets-Tan RGH, Schröder CP, Dierckx RA, et al. PET imaging of estrogen receptors as a diagnostic tool for breast cancer patients presenting with a clinical dilemma. J Nucl Med. Society of Nuclear Medicine. 2012;53:182–90.
Shields AFA, Grierson JRJ, Dohmen BMB, Machulla HJH, Stayanoff JCJ, Lawhorn-Crews JMJ, et al. Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat Med. 1998;4:1334–6.
Been LB, Elsinga PH, de Vries J, Cobben DCP, Jager PL, Hoekstra HJ, et al. Positron emission tomography in patients with breast cancer using (18)F-3“-deoxy-3-”fluoro-l-thymidine ((18)F-FLT)-a pilot study. Eur J Surg Oncol. 2006;32:39–43.
Belt JA, Marina NM, Phelps DA, Crawford CR. Nucleoside transport in normal and neoplastic cells. Advances in Enzyme Regulation. 1993;33:235–52.
Brockenbrough JS, Souquet T, Morihara JK, Stern JE, Hawes SE, Rasey JS, et al. Tumor 3“-deoxy-3-”(18)F-fluorothymidine ((18)F-FLT) uptake by PET correlates with thymidine kinase 1 expression: static and kinetic analysis of (18)F-FLT PET studies in lung tumors. J Nucl Med. 2011;52:1181–8.
Barthel H, Perumal M, Latigo J, He Q, Brady F, Luthra SK, et al. The uptake of 3“-deoxy-3-”[18F]fluorothymidine into L5178Y tumours in vivo is dependent on thymidine kinase 1 protein levels. Eur J Nucl Med Mol Imaging. 2005;32:257–63.
Buchmann I, Neumaier B, Schreckenberger M, Reske S. [18F]3“-Deoxy-3-”fluorothymidine-PET in NHL patients: whole-body biodistribution and imaging of lymphoma manifestations—a pilot study. Cancer Biother. Radiopharm. Mary Ann Liebert, Inc. 2 Madison Avenue Larchmont, NY 10538 USA; 2004;19:436–42.
Toyohara J, Waki A, Takamatsu S, Yonekura Y, Magata Y, Fujibayashi Y. Basis of FLT as a cell proliferation marker: comparative uptake studies with [3H]thymidine and [3H]arabinothymidine, and cell-analysis in 22 asynchronously growing tumor cell lines. Nucl. Med. Biol. 2002;29:281–7.
Lu L, Samuelsson L, Bergstrom M, Sato K, Fasth K-J, Langstrom B. Rat studies comparing 11C-FMAU, 18F-FLT, and 76Br-BFU as proliferation markers. J Nucl Med. 2002;43:1688–98.
Wagner M, Seitz U, Buck A, Neumaier B, Schultheiss S, Bangerter M, et al. 3“-[18F]fluoro-3-”deoxythymidine ([18F]-FLT) as positron emission tomography tracer for imaging proliferation in a murine B-Cell lymphoma model and in the human disease. Cancer Res. 2003;63:2681–7.
Plagemann PGW, Richey DP, Zylka JM, Erbe J. Thymidine transport by Novikoff rat hepatoma cells synchronized by double hydroxyurea treatment. Experimental Cell Research. 1974;83:303–10.