CEIB - Centre Interfacultaire des Biomatériaux - ULiège
Disciplines :
Materials science & engineering
Author, co-author :
de Meneses, L.; Applied Molecular Biosciences Unit (UCIBIO-REQUIMTE), NOVA University of Lisbon, Campus da Caparica, Caparica, Portugal, Associate Laboratory for Green Chemistry (LAQV-REQUIMTE), Chemistry Department, Faculty of Sciences and Technology, NOVA University of Lisbon, Campus da Caparica, Caparica, Portugal
Pereira, J. R.; Applied Molecular Biosciences Unit (UCIBIO-REQUIMTE), NOVA University of Lisbon, Campus da Caparica, Caparica, Portugal
Grandfils, Christian ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Biochimie et physiologie générales, et biochimie humaine
Paiva, A.; Associate Laboratory for Green Chemistry (LAQV-REQUIMTE), Chemistry Department, Faculty of Sciences and Technology, NOVA University of Lisbon, Campus da Caparica, Caparica, Portugal
Reis, M. A. M.; Applied Molecular Biosciences Unit (UCIBIO-REQUIMTE), NOVA University of Lisbon, Campus da Caparica, Caparica, Portugal
Freitas, F.; Applied Molecular Biosciences Unit (UCIBIO-REQUIMTE), NOVA University of Lisbon, Campus da Caparica, Caparica, Portugal
Language :
English
Title :
Pseudomonas chlororaphis as a multiproduct platform: Conversion of glycerol into high-value biopolymers and phenazines
Laursen JB, Nielsen J. Phenazine Natural Products: Biosynthesis, Synthetic Analogues, and Biological Activity. Chem Rev 2004;104:1663–85. doi:10.1021/cr020473j.
Tan GYA, Chen C-L, Li L, Ge L, Wang L, Razaad IMN, et al. Start a research on biopolymer polyhydroxyalkanoate (PHA): A review. Polymers (Basel) 2014;6:706–54. doi:10.3390/polym6030706.
Fett WF, Cescutti P, Wijey C. Exopolysaccharides of the plant pathogens Pseudomonas corrugata and Ps. flavescens and the saprophyte Ps. chlororaphis. J Appl Bacteriol 1996;81:181–7. doi:10.1111/j.1365-2672.1996.tb04497.x.
Chen Y, Shen X, Peng H, Hu H, Wang W, Zhang X. Comparative genomic analysis and phenazine production of Pseudomonas chlororaphis, a plant growth-promoting rhizobacterium. Genomics Data 2015;4:33–42. doi:https://doi.org/10.1016/j.gdata.2015.01.006 2213-5960.
Peix A, Valverde A, Rivas R, Igual JM, Ramírez-Bahena M-H, Mateos PF, et al. Reclassification of Pseudomonas aurantiaca as a synonym of Pseudomonas chlororaphis and proposal of three subspecies, P. chlororaphis subsp. chlororaphis subsp. nov., P. chlororaphis subsp. aureofaciens subsp. nov., comb. nov. and P. chlororaphis subsp. aurantiaca subsp. nov., comb. nov. Int J Syst Evol Microbiol 2007;57:1286–90. doi:10.1099/ijs.0.64621-0.
Chincholkar S, Thomashow L. Microbial Phenazines. Springer; 2013.
Gunther NW, Nuñez A, Fett W, Solaiman DKY. Production of Rhamnolipids by Pseudomonas chlororaphis, a Nonpathogenic Bacterium. Appl Environ Microbiol 2005;71:2288–93. doi:10.1007/s00253-005-0150-3.
Muhr A, Rechberger EM, Salerno A, Reiterer A, Malli K, Strohmeier K, et al. Novel Description of mcl-PHA Biosynthesis by Pseudomonas chlororaphis from Animal-Derived Waste. J Biotechnol 2013;165:45–51. doi:https://doi.org/10.1016/j.jbiotec.2013.02.003.
Li Y, Jiang H, Du X, Huang X, Zhang X, Xu Y, et al. Enhancement of phenazine-1-carboxylic acid production using batch and fed-batch culture of gacA inactivated Pseudomonas sp. M18G. Bioresour Technol 2010;101:3649–56. doi:10.1016/j.biortech.2009.12.120.
Yao R, Pan K, Peng H, Feng L, Hu H, Zhang X. Engineering and systems‑level analysis of Pseudomonas chlororaphis for production of phenazine‑1‑carboxamide using glycerol as the cost‑effective carbon source. Biotechnol Biofuels 2018;11:1–15. doi:10.1186/s13068-018-1123-y.
Koller M, Niebelschütz H, Braunegg G. Strategies for recovery and purification of poly[(R)-3-hydroxyalkanoates] (PHA) biopolyesters from surrounding biomass. Eng Life Sci 2013;13:549–62. doi:10.1002/elsc.201300021.
Anjum A, Zuber M, Zia KM, Noreen A, Anjum MN, Tabasum S. Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers: A review of recent advancements. Int J Biol Macromol 2016;89:161–74. doi:https://doi.org/10.1016/j.ijbiomac.2016.04.069.
Rai R, Keshavarz T, Roether JA, Boccaccini AR, Roy I. Medium chain length polyhydroxyalkanoates, promising new biomedical materials for the future. Mater Sci Eng R 2011;72:29–47. doi:10.1016/j.mser.2010.11.002.
Solaiman DKY, Ashby RD, Jr ATH, Foglia TA. Biosynthesis of medium-chain-length poly(hydroxyalkanoates) from soy molasses. Biotechnol Lett 2006;28:157–62. doi:10.1007/s10529-005-5329-2.
Yun HS, Young DK, Chung CW, Kim HW, Yang YK, Rhee YH. Characterization of a Tacky Poly(3-Hydroxyalkanoate) Produced by Pseudomonas chlororaphis HS21 from Palm Kernel Oil. J Microbiol Biotchnol 2003;13:64–9.
Pereira JR, Araújo D, Marques AC, Neves LA, Grand C, Sevrin C, et al. Demonstration of the adhesive properties of the medium-chain-length polyhydroxyalkanoate produced by Pseudomonas chlororaphis subsp. aurantiaca from glycerol. Int J Biol Macromol 2019;122:1144–51. doi:10.1016/j.ijbiomac.2018.09.064.
Kumar AS, Mody K, Jha B. Bacterial exopolysaccharides – a perception. J Basic Microbiol 2007;47:103–17. doi:10.1002/jobm.200610203.
Varbanets LD, Zdorovenko EL, Kiprianova EA, Avdeeva L V., Brovarskaya OS, Rybalko SL. Characterization of the Lipipolysaccharides of Pseudomonas chlororaphis. Microbiology 2015;84:781–90. doi:10.1134/S0026261715060132.
Freitas F, Alves VD, Reis MAM. Advances in bacterial exopolysaccharides: From production to biotechnological applications. Trends Biotechnol 2011;29:388–98. doi:doi:10.1016/j.tibtech.2011.03.008.
Cruz M V., Freitas F, Paiva A, Mano F, Dionísio M, Ramos AM, et al. Valorization of fatty acids-containing wastes and byproducts into short- and medium-chain length polyhydroxyalkanoates. N Biotechnol 2016;33:206–15. doi:10.1016/j.nbt.2015.05.005.
Freitas F, Alves VD, Pais J, Carvalheira M, Costa N, Oliveira R, et al. Production of a new exopolysaccharide (EPS) by Pseudomonas oleovorans NRRL B-14682 grown on glycerol. Process Biochem 2010;45:297–305. doi:10.1016/j.procbio.2009.09.020.
Bauer JS, Hauck N, Christof L, Mehnaz S, Gust B, Gross H. The Systematic Investigation of the Quorum Sensing System of the Biocontrol Strain Pseudomonas chlororaphis subsp. aurantiaca PB-St2 Unveils aurI to Be a Biosynthetic Origin for 3-Oxo-Homoserine Lactones. PLoS One 2016;11:1–21. doi:10.1371/journal.pone.0167002.
Antunes S, Freitas F, Sevrin C, Grandfils C, Reis MAM. Production of FucoPol by Enterobacter A47 using waste tomato paste. Bioresour Technol 2017;227:66–73. doi:10.1016/j.biortech.2016.12.018.
Galego N, Rozsa C, Sánchez R, Fung J, Analía V, Santo Tomás J. Characterization and application of poly(B-hydroxyalkanoates) family as composite biomaterials. Polym Test 2000;19:485–92. doi:10.1016/s0142-9418(99)00011-2.
Schneemann I, Wiese J, Kunz AL, Imhoff JF. Genetic approach for the fast discovery of phenazine producing bacteria. Mar Drugs 2011;9:772–89. doi:10.3390/md9050772.
Sharma PK, Munir RI, de Kievit T, Levin DB. Synthesis of polyhydroxyalkanoates (PHAs) from vegetable oils and free fatty acids by wild-type and mutant strains of Pseudomonas chlororaphis. Can J Microbiol 2017;63:1009–24. doi:10.1139/cjm-2017-0412.
Zdorovenko EL, Kadykova AA, Varbanets LD, Shashkov AS, Kiprianova EA, Brovarskaya OS, et al. Structure of the O-specific polysaccharides of Pseudomonas chlororaphis subsp. chlororaphis UCM B-106. Carbohydr Res 2016;433:1–4. doi:10.1016/j.carres.2016.06.013.
Pieretti G, Puopolo G, Carillo S, Zoina A, Lanzetta R, Parrilli M, et al. Structural characterization of the O-chain polysaccharide from an environmentally beneficial bacterium Pseudomonas chlororaphis subsp. aureofaciens strain M71. Carbohydr Res 2011;346:2705–9. doi:10.1016/j.carres.2011.09.027.
Reis MAM, Oliveira R, Freitas F, Pais J. Galactose-rich Polysaccharide, Process for the Production of the Polymer and its Applications. PCT/PT2008/000015, 2008.
Guo W, Song C, Kong M, Geng W, Wang Y, Wang S. Simultaneous production and characterization of medium-chain-length polyhydroxyalkanoates and alginate oligosaccharides by Pseudomonas mendocina NK-01. Appl Microbiol Biotechnol 2011;92:791–801. doi:10.1007/s00253-011-3333-0.
Pham TH, Webb JS, Rehm BHA. The role of polyhydroxyalkanoate biosynthesis by Pseudomonas aeruginosa in rhamnolipid and alginate production as well as stress tolerance and biofilm formation. Microbiology 2004;150:3405–13. doi:10.1099/mic.0.27357-0.
Peña C, Castillo T, Núñez C, Segura D. Bioprocess Design: Fermentation Strategies for Improving the Production of Alginate and Poly-β-Hydroxyalkanoates (PHAs) by Azotobacter vinelandii. Prog. Mol. Environ. Bioeng. - From Anal. Model. to Technol. Appl., London: INTECH-Open Access Publisher; 2011.
Sánchez RJ, Schripsema J, da Silva LF, Taciro MK, Pradella JGC, Gomez JGC. Medium-chain-length polyhydroxyalkanoic acids (PHAmcl) produced by Pseudomonas putida IPT 046 from renewable sources. Eur Polym J 2003;39:1385–94. doi:10.1016/S0014-3057(03)00019-3.
Hazer DB, Kiliçay E, Hazer B. Poly(3-hydroxyalkanoate)s: Diversification and biomedical applications. A state of the art review. Mater Sci Eng C 2012;32:637–47. doi:10.1016/j.msec.2012.01.021.
Ward PG, Roo G de, O'Connor KE. Accumulation of polyhydroxyalkanoate from styrene and phenylacetic acid by Pseudomonas putida CA-3. Appl Environ Microbiol 2005;71:2046–52. doi:10.1128/AEM.71.4.2046-2052.2005.
Sathiyanarayanan G, Bhatia SK, Song H-S, Jeon J-M, Kim J, Lee YK, et al. Production and characterization of medium-chain-length polyhydroxyalkanoates copolymer from Arctic psychrotrophic bacterium Pseudomonas sp. PAMC 28620. Int J Biol Macromol 2017;97:710–20. doi:10.1016/j.ijbiomac.2017.01.053.
Freitas F, Alves VD, Pais J, Costa N, Oliveira C, Mafra L, et al. Characterization of an extracellular polysaccharide produced by a Pseudomonas strain grown on glycerol. Bioresour Technol 2009;100:859–65. doi:doi:10.1016/j.biortech.2008.07.002.
Dogan NM, Doganli GA, Dogan G, Bozkaya O. Characterization of Extracellular Polysaccharides (EPS) Produced by Thermal Bacillus and Determination of Environmental Conditions Affecting Exopolysaccharide Production. Int J Environ Res 2015;9:1107–16.