[en] In this study, the influence of alkali, alkaline earth or rare-earth dopant (i.e. Ca, K, Mg or Ce) addition in 10 wt. % Ni/γ-Al2O3 catalyst were studied on the material physicochemical properties and catalytic activity. Twelve doped Ni/γ-Al2O3 catalysts were synthesized by sol-gel process in aqueous medium. One Ni/γ-Al2O3 catalyst without dopant was also synthesized as reference material. The addition of 1.5 wt. % of alkali (i.e. Ca, K or Mg) did not influence the acido-basicity properties of the catalysts due to low interactions with the support. All samples doped with 1.5 wt. % of oxide (i.e. Ca, K, Mg or Ce) presented a decrease of benzene selectivity up to 73% and a decrease of the amount of carbon deposit up to 40 %. These results were attributed to a higher degradation of the intermediate compounds of toluene and the carbonaceous compounds because of a higher amount of H2O and CO2 molecules adsorbed on these oxides. Among the different compositions of Ni/γ-Al2O3 catalysts doped with two different types of oxides (i.e. K+Ca) showed the most interesting performances with an increase of 20 % in conversion and a decrease of 10 % in carbon deposition. Therefore, it showed that low-cost elements (as Ca and K) can be added in small amount to increase the catalytic properties without the need of the expensive ceria element.
Disciplines :
Materials science & engineering Chemical engineering
Author, co-author :
Claude, Vincent
Mahy, Julien ; Université de Liège - ULiège > Department of Chemical Engineering > Nanomaterials, Catalysis, Electrochemistry
Lohay, Thimotée
Tilkin, Rémi ; Université de Liège - ULiège > Department of Chemical Engineering > Nanomaterials, Catalysis, Electrochemistry
Micheli, Francesca
Lambert, Stéphanie ; Université de Liège - ULiège > Department of Chemical Engineering > Nanomaterials, Catalysis, Electrochemistry
Language :
English
Title :
Sol-gel synthesis of Ni/Al2O3 catalysts for toluene reforming: Support modification with alkali, alkaline earth or rare-earth dopant (Ca, K, Mg or Ce)
Claude, V., Courson, C., Köhler, M., Lambert, S.D., Overview and essentials of biomass gasification technologies and their catalytic cleaning methods. Energy Fuels 30 (2016), 8791–8814, 10.1021/acs.energyfuels.6b01642.
Claude, V., Courson, C., Köhler, M., Lambert, S.D., Correction to overview and essentials of biomass gasification technologies and their catalytic cleaning methods (Energy Fuels. Energy Fuels 30:11 (2016), 8791–8814, 10.1021/acs.energyfuels.6b0164210.1021/acs.energyfuels.6b03436 31 (2017) 1050.
Chan, F.L., Tanksale, A., Review of recent developments in Ni-based catalysts for biomass gasification. Renew. Sustain. Energy Rev. 38 (2014), 428–438, 10.1016/j.rser.2014.06.011.
Qiu, M., Li, Y., Wang, T., Zhang, Q., Wang, C., Zhang, X., et al. Upgrading biomass fuel gas by reforming over Ni–MgO/γ-Al2O3 cordierite monolithic catalysts in the lab-scale reactor and pilot-scale multi-tube reformer. Appl. Energy 90 (2012), 3–10, 10.1016/j.apenergy.2011.01.064.
Davar, F., Salavati-Niasari, M., Mir, N., Saberyan, K., Monemzadeh, M., Ahmadi, E., Thermal decomposition route for synthesis of Mn3O4 nanoparticles in presence of a novel precursor. Polyhedron 29 (2010), 1747–1753, 10.1016/j.poly.2010.02.026.
Motahari, F., Mozdianfard, M.R., Soofivand, F., Salavati-Niasari, M., NiO nanostructures: Synthesis, characterization and photocatalyst application in dye wastewater treatment. RSC Adv. 4 (2014), 27654–27660, 10.1039/c4ra02697g.
Mohandes, F., Davar, F., Salavati-Niasari, M., Magnesium oxide nanocrystals via thermal decomposition of magnesium oxalate. J. Phys. Chem. Solids 71 (2010), 1623–1628, 10.1016/j.jpcs.2010.08.014.
Gholami, T., Salavati-Niasari, M., Effects of copper:aluminum ratio in CuO/Al2O3 nanocomposite: Electrochemical hydrogen storage capacity, band gap and morphology. Int. J. Hydrogen Energy 41 (2016), 15141–15148, 10.1016/j.ijhydene.2016.06.191.
Salavati-Niasari, M., Synthesis and characterization of host (nanodimensional pores of zeolite- Y)-guest [unsaturated 16-membered octaaza-macrocycle manganese(II), cobalt(II), nickel(II), copper(II), and zinc(II) complexes] nanocomposite materials. Chem. Lett. 34 (2005), 1444–1445, 10.1246/cl.2005.1444.
Salavati-Niasari, M., Host (nanocavity of zeolite-Y)-guest (tetraaza[14]annulene copper(II) complexes) nanocomposite materials: synthesis, characterization and liquid phase oxidation of benzyl alcohol. J. Mol. Catal. A Chem. 245 (2006), 192–199, 10.1016/j.molcata.2005.09.046.
Salavati-Niasari, M., synthesis, Ship-in-a-bottle, characterization and catalytic oxidation of styrene by host (nanopores of zeolite-Y)/guest ([bis(2-hydroxyanil)acetylacetonato manganese(III)]) nanocomposite materials (HGNM). Microporous Mesoporous Mater. 95 (2006), 248–256, 10.1016/j.micromeso.2006.05.025.
Salavati-Niasari, M., Shaterian, M., Ganjali, M.R., Norouzi, P., Oxidation of cyclohexene with tert-butylhydroperoxide catalysted by host (nanocavity of zeolite-Y)/guest (Mn(II), Co(II), Ni(II) and Cu(II) complexes of N,N′-bis(salicylidene)phenylene-1,3-diamine) nanocomposite materials (HGNM). J. Mol. Catal. A Chem. 261 (2007), 147–155, 10.1016/j.molcata.2006.07.048.
Salavati-Niasari, M., Loghman-Estarki, M.R., Davar, F., Controllable synthesis of nanocrystalline CdS with different morphologies by hydrothermal process in the presence of thioglycolic acid. Chem. Eng. J. 145 (2008), 346–350, 10.1016/j.cej.2008.08.040.
Mousavi-Kamazani, M., Zarghami, Z., Salavati-Niasari, M., Facile and novel chemical synthesis, characterization, and formation mechanism of copper sulfide (Cu2S, Cu2S/CuS, CuS) nanostructures for increasing the efficiency of solar cells. J. Phys. Chem. C 120 (2016), 2096–2108, 10.1021/acs.jpcc.5b11566.
Sabet, M., Salavati-Niasari, M., Amiri, O., Using different chemical methods for deposition of CdS on TiO2 surface and investigation of their influences on the dye-sensitized solar cell performance. Electrochim. Acta 117 (2014), 504–520, 10.1016/j.electacta.2013.11.176.
Anis, S., a. Zainal, Z., Tar reduction in biomass producer gas via mechanical, catalytic and thermal methods: a review. Renew. Sustain. Energy Rev. 15 (2011), 2355–2377, 10.1016/j.rser.2011.02.018.
Li, D., Nakagawa, Y., Tomishige, K., Development of Ni-based catalysts for steam reforming of tar derived from biomass pyrolysis. Chin. J. Catal. 33 (2012), 583–594, 10.1016/S1872-2067(11)60359-8.
Świerczyński, D., Libs, S., Courson, C., Kiennemann, a., Steam reforming of tar from a biomass gasification process over Ni/olivine catalyst using toluene as a model compound. Appl. Catal. B Environ. 74 (2007), 211–222, 10.1016/j.apcatb.2007.01.017.
Kuhn, J.N., Zhao, Z., Senefeld-Naber, A., Felix, L.G., Slimane, R.B., Choi, C.W., et al. Ni-olivine catalysts prepared by thermal impregnation: structure, steam reforming activity, and stability. Appl. Catal. A Gen. 341 (2008), 43–49, 10.1016/j.apcata.2007.12.037.
Zhao, Z., Lakshminarayanan, N., Kuhn, J.N., Senefeld-Naber, A., Felix, L.G., Slimane, R.B., et al. Optimization of thermally impregnated Ni-olivine catalysts for tar removal. Appl. Catal. A Gen. 363 (2009), 64–72, 10.1016/j.apcata.2009.04.042.
Yung, M.M., Jablonski, W.S., a. Magrini-Bair, K., Review of catalytic conditioning of biomass-derived syngas. Energy Fuels 23 (2009), 1874–1887.
Ismagilov, Z.R., Kerzhentsev, M.A., Sazonov, V.A., Tsykoza, L.T., Shikina, N.V, Kuznetsov, V.V, et al. Study of catalysts for catalytic burners for fuel cell power plant reformers. Korean J. Chem. Eng. 20 (2003), 461–467.
Wang, S., CO2 reforming of methane on Ni catalysts: effects of the support phase and preparation technique. Appl. Catal. B Environ. 16 (1998), 269–277.
Zamboni, I., Courson, C., Niznansky, D., Kiennemann, a., Simultaneous catalytic H2 production and CO2 capture in steam reforming of toluene as tar model compound from biomass gasification. Appl. Catal. B Environ. 145 (2014), 63–72, 10.1016/j.apcatb.2013.02.046.
Nwamaka-Ude, S., The Synthesis and Crystal Chemistry of Ca12Al14O33 doped with Fe2O3. Master's Thesis, 2010, University of Tennesse.
Li, C., Hirabayashi, D., Suzuki, K., A crucial role of O2− and O22− on mayenite structure for biomass tar steam reforming over Ni/Ca12Al14O33. Appl. Catal. B Environ. 88 (2009), 351–360, 10.1016/j.apcatb.2008.11.004.
Zhou, S., Zhou, Y., Zhang, Y., Sheng, X., Zhang, Z., Kong, J., Synthesis of core–shell-structured SBA-15@MgAl2O4 with enhanced catalytic performance of propane dehydrogenation. J. Mater. Sci. 49 (2013), 1170–1178, 10.1007/s10853-013-7797-4.
Li, J., Ikegami, T., Lee, J., Mori, T., Yajima, Y., Synthesis of Mg ± Al spinel powder via precipitation using ammonium bicarbonate as the precipitant. J. Eur. Ceram. Soc. 21 (2001), 139–148.
Garcia, L., French, R., Czernik, S., Chornet, E., Catalytic steam reforming of bio-oils for the production of hydrogen: effects of catalyst composition. Appl. Catal. A Gen. 201 (2000), 225–239.
Seok, S., Mn-promoted Ni/Al2O3 catalysts for stable carbon dioxide reforming of methane. J. Catal. 209 (2002), 6–15, 10.1006/jcat.2002.3627.
Gálvez, M.E., Ascaso, S., Stelmachowski, P., Legutko, P., Kotarba, a., Moliner, R., et al. Influence of the surface potassium species in Fe–K/Al2O3 catalysts on the soot oxidation activity in the presence of NOx. Appl. Catal. B Environ. 152–153 (2014), 88–98, 10.1016/j.apcatb.2014.01.041.
Wang, S., Lu, G.Q., Role of CeO2 in Ni/CeO2–Al2O3 catalysts for carbon dioxide reforming of methane. Appl. Catal. B Environ. 19 (1998), 267–277, 10.1016/S0926-3373(98)00081-2.
Lambert, S., Alié, C., Pirard, J.P., Heinrichs, B., Study of textural properties and nucleation phenomenon in Pd/SiO2, Ag/SiO2 and Cu/SiO2 cogelled xerogel catalysts. J. Non Cryst. Solids 342 (2004), 70–81, 10.1016/j.jnoncrysol.2004.06.005.
Tasseroul, L., Pirard, S.L., Lambert, S.D., a. Páez, C., Poelman, D., Pirard, J.P., et al. Kinetic study of p-nitrophenol photodegradation with modified TiO 2 xerogels. Chem. Eng. J. 191 (2012), 441–450, 10.1016/j.cej.2012.02.050.
Mahy, J.G., Claude, V., Sacco, L., Lambert, S.D., Ethylene polymerization and hydrodechlorination of 1,2-dichloroethane mediated by nickel (II) covalently anchored to silica xerogels. J. Sol–Gel Sci. Technol. 81 (2017), 59–68, 10.1007/s10971-016-4272-0.
Mahy, J.G., Paez, C.A., Carcel, C., Bied, C., Tatton, A.S., Damblon, C., et al. Porphyrin-based hybrid silica-titania as a visible-light photocatalyst. J. Photochem. Photobiol. A Chem. 373 (2019), 66–76, 10.1016/j.jphotochem.2019.01.001.
Salavati-Niasari, M., Farhadi-Khouzani, M., Davar, F., Bright blue pigment CoAl2O4 nanocrystals prepared by modified sol–gel method. J. Sol–Gel Sci. Technol. 52 (2009), 321–327, 10.1007/s10971-009-2050-y.
Salavati-Niasari, M., Davar, F., Farhadi, M., Synthesis and characterization of spinel-type CuAl2O4 nanocrystalline by modified sol–gel method. J. Sol–Gel Sci. Technol. 51 (2009), 48–52, 10.1007/s10971-009-1940-3.
Claude, V., Mahy, J.G., Geens, J., Courson, C., Lambert, S.D., Synthesis of Ni/γ-Al2O3–SiO2 catalysts with different silicon precursors for the steam toluene reforming. Microporous Mesoporous Mater. 284 (2019), 304–315, 10.1016/j.micromeso.2019.04.027.
Claude, V., Mahy, J.G., Geens, J., Lambert, S.D., Ni-doped γ-Al2O3 as secondary catalyst for bio-syngas purification: influence of Ni loading, catalyst preparation, and gas composition on catalytic activity. Mater. Today Chem. 13 (2019), 98–109, 10.1016/j.mtchem.2019.05.002.
Claude, V., Mahy, J.G., Tilkin, R.G., Lambert, S.D., Enhancement of the catalytic performances and lifetime of Ni/-Al2O3 catalysts for the steam toluene reforming via the combination of dopants: Inspection of Cu, Co, Fe, Mn and Mo species addition. Mater. Today Chem., 15, 2020, 100229.
Claude, V., Mahy, J.G., Micheli, F., Geens, J., Lambert, S.D., Sol–gel Ni/γ-Al2O3 material as secondary catalyst for toluene reforming: tailoring the γ-Al2O3 substrate with stearic acid. Microporous Mesoporous Mater., 291, 2020, 109681, 10.1016/j.micromeso.2019.109681.
Elias, K.F.M., Lucrédio, A.F., Assaf, E.M., Effect of CaO addition on acid properties of Ni–Ca/Al2O3 catalysts applied to ethanol steam reforming. Int. J. Hydrogen Energy 38 (2013), 4407–4417, 10.1016/j.ijhydene.2013.01.162.
Nakamura, K., Miyazawa, T., Sakurai, T., Miyao, T., Naito, S., Begum, N., et al. Promoting effect of MgO addition to Pt/Ni/CeO2/Al2O3 in the steam gasification of biomass. Appl. Catal. B Environ. 86 (2009), 36–44, 10.1016/j.apcatb.2008.07.016.
Wang, C., Wang, T., Ma, L., Gao, Y., Wu, C., Steam reforming of biomass raw fuel gas over NiO–MgO solid solution cordierite monolith catalyst. Energy Convers. Manag. 51 (2010), 446–451, 10.1016/j.enconman.2009.10.006.
Choudhary, V.R., Uphade, B.S., Mamman, A.S., Oxidative Conversion of Methane to Syngas over Nickel Supported on Commercial Low Surface Area Porous Catalyst Carriers Precoated with Alkaline and Rare Earth Oxides. J. Catal. 172 (1997), 281–293.
Nishikawa, J., Nakamura, K., Asadullah, M., Miyazawa, T., Kunimori, K., Tomishige, K., Catalytic performance of Ni/CeO2/Al2O3 modified with noble metals in steam gasification of biomass. Catal. Today 131 (2008), 146–155, 10.1016/j.cattod.2007.10.066.
Liu, Q., Gao, J., Zhang, M., Li, H., Gu, F., Xu, G., et al. Highly active and stable Ni/γ-Al2O3 catalysts selectively deposited with CeO2 for CO methanation. RSC Adv., 4, 2014, 16094, 10.1039/C4RA00746H.
Miyazawa, T., Kimura, T., Nishikawa, J., Kado, S., Kunimori, K., Tomishige, K., Catalytic performance of supported Ni catalysts in partial oxidation and steam reforming of tar derived from the pyrolysis of wood biomass. Catal. Today 115 (2006), 254–262, 10.1016/j.cattod.2006.02.055.
Tapia-Parada, K., Valverde-Aguilar, G., Mantilla, A., a. Valenzuela, M., Hernández, E., Synthesis and characterization of Ni/Ce–SiO2 and Co/Ce–TiO2 catalysts for methane decomposition. Fuel 110 (2013), 70–75, 10.1016/j.fuel.2012.11.022.
Puchalska, M., Zych, E., Sobczyk, M., Watras, A., Deren, P., Effect of charge compensation on up-conversion and UV excited luminescence of Eu3+ in Yb3+–Eu3+ doped calcium aluminate CaAl4O7. Mater. Chem. Phys. 147 (2014), 304–310, 10.1016/j.matchemphys.2014.05.003.
A.P. De Kroon, W. Schafer, F. Aldinger, Crystallography of potassium aluminate K2O.Al2O3, 314 (2001) 147–153.
Sciences, G., Carbonation, hydration, and melting relations in the system MgO–H2O–CO, at pressures up to 100 kbar. Am. Miner. 64 (1979), 32–40.
Xu, L., Song, H., Chou, L., Ordered mesoporous MgO–Al2O3 composite oxides supported Ni based catalysts for CO2 reforming of CH4: effects of basic modifier and mesopore structure. Int. J. Hydrogen Energy 38 (2013), 7307–7325, 10.1016/j.ijhydene.2013.04.034.
Zhenissova, A., Micheli, F., Rossi, L., Stendardo, S., Foscolo, P.U., Gallucci, K., Experimental evaluation of Mg- and Ca-based synthetic sorbents for CO2 capture. Chem. Eng. Res. Des. 92 (2014), 727–740, 10.1016/j.cherd.2013.11.005.
Hadden, R., Howe, J., Waugh, K., Hydrocarbon steam reforming catalysts- alkali induced resistance to carbon formation. Catal. Deactiv., 1991, 177–184.
Acharya, B., Dutta, A., Basu, P., An investigation into steam gasification of biomass for hydrogen enriched gas production in presence of CaO. Int. J. Hydrogen Energy 35 (2010), 1582–1589, 10.1016/j.ijhydene.2009.11.109.
L. Xu, H. Song, L. Chou, One-pot synthesis of ordered mesoporous NiO–CaO–Al2O3 composite oxides for catalyzing CO2 reforming of CH4, (2012).
Golebiowski, A., Stolecki, K., Prokop, U., A.Kusmierowska, A.Denis, Sikorska, C., Influence of potassium on the properties of steam reforming catalysts. React. Kinet. Catal. Lett. 82 (2004), 179–189.
Swaan, H.M., Kroll, V.C.H., Martin, G.A., Mirodatos, C., Deactivation of supported nickel catalysts during the reforming of methane by carbon dioxide. Catal. Today 21 (1994), 571–578, 10.1016/0920-5861(94)80181-9.
Engelen, K., Draelants, D.J., Baron, G.V, Improvement of sulphur resistance of a nickel-modified catalytic filter for tar removal from biomass gasification gas. Proc. 5th Int. Symp. Gas Clean, High Temp, 2003.
Osaki, T., Mori, T., Role of potassium in carbon-free CO2 reforming of methane on K-promoted Ni/Al2O3 catalysts. J. Catal. 204 (2001), 89–97, 10.1006/jcat.2001.3382.
Roh, H.-S., Potdar, H.S., Jun, K.-W., Carbon dioxide reforming of methane over co-precipitated Ni–CeO2, Ni–ZrO2 and Ni–Ce–ZrO2 catalysts. Catal. Today 93–95 (2004), 39–44, 10.1016/j.cattod.2004.05.012.
Chang, J.-S., Hong, D.-Y., Li, X., Park, S.-E., Thermogravimetric analyses and catalytic behaviors of zirconia-supported nickel catalysts for carbon dioxide reforming of methane. Catal. Today 115 (2006), 186–190, 10.1016/j.cattod.2006.02.052.
Park, H.J., Park, S.H., Sohn, J.M., Park, J., Jeon, J.-K., Kim, S.-S., et al. Steam reforming of biomass gasification tar using benzene as a model compound over various Ni supported metal oxide catalysts. Bioresour. Technol. 101 Suppl (2010), S101–S103, 10.1016/j.biortech.2009.03.036.
Chen, W., Zhao, G., Xue, Q., Chen, L., Lu, Y., High carbon-resistance Ni/CeAlO3–Al2O3 catalyst for CH4/CO2 reforming. Appl. Catal. B Environ. 136–137 (2013), 260–268, 10.1016/j.apcatb.2013.01.044.
Quitete, C.P.B., Bittencourt, R.C.P., Souza, M.M.V.M., Steam reforming of tar using toluene as a model compound with nickel catalysts supported on hexaaluminates. Appl. Catal. A Gen. 478 (2014), 234–240, 10.1016/j.apcata.2014.04.019.
Tomishige, K., Kimura, T., Nishikawa, J., Miyazawa, T., Kunimori, K., Promoting effect of the interaction between Ni and CeO2 on steam gasification of biomass. Catal. Commun. 8 (2007), 1074–1079, 10.1016/j.catcom.2006.05.051.
Hu, X., Lu, G., Inhibition of methane formation in steam reforming reactions through modification of Ni catalyst and the reactants. Green Chem. 11 (2009), 724–732, 10.1039/b814009j.
Hou, Z., X.Zheng, T.Yashima, High coke-resistance of K-Ca promoted a-Al2O3 catalyst for CH4 reforming with CO2. React. Kinet. Catal. Lett. 84 (2005), 229–235.
Jung, Y.-S., Yoon, W.-L., Seo, Y.-S., Rhee, Y.-W., The effect of precipitants on Ni-Al2O3 catalysts prepared by a co-precipitation method for internal reforming in molten carbonate fuel cells. Catal. Commun. 26 (2012), 103–111, 10.1016/j.catcom.2012.04.029.
Matsumura, M., Hirai, C., Deterioration mechanism of direct internal reforming catalyst. J. Chem. Eng. Jpn. 31 (1998), 734–740.
Zhang, L., Zhang, B., Yang, Z., Guo, M., The role of water on the performance of calcium oxide-based sorbents for carbon dioxide capture: a review. Energy Technol. 3 (2015), 10–19, 10.1002/ente.201402099.
Juan-Juan, J., Román-Martínez, M.C., Illán-Gómez, M.J., Catalytic activity and characterization of Ni/Al2O3 and NiK/Al2O3 catalysts for CO2 methane reforming. Appl. Catal. A Gen. 264 (2004), 169–174, 10.1016/j.apcata.2003.12.040.
Demicheli, M., Duprez, D., Barbier, J., Ferretti, O., Ponzi, E., Deactivation of steam reforming model catalysts by coke formation. J. Catal. 145 (1994), 437–439.