Curcumin-loaded polysaccharides-based complex particles obtained by polyelectrolyte complexation and ionic gelation. I-Particles obtaining and characterization
Center for Education and Research on Macromolecules (CERM) CESAM - Complex and Entangled Systems from Atoms to Materials - ULiège
Disciplines :
Chemistry Materials science & engineering
Author, co-author :
Iurciuc-Tincu, Camelia-Elena; University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Technology, Iaşi, Romania > Gheorghe Asachi Technical University, Faculty of Chemical Engineering and Protection of the Environment, Department of Natural and Synthetic Polymers, Iaşi, Romania
Atanase Ionut, Leonard; University Apollonia, Faculty of Dental Medicine, Iasi, Romania
Ochiuz, Lăcrămioara; University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Technology, Iaşi, Romania
Jérôme, Christine ; University of Liège (ULiège), Complex and Entangled Systems from Atoms to Materials (CESAM) Research Unit, Center for Education and Research on Macromolecules (CERM), Belgium
Sol, Vincent; University of Limoges, Faculté des Sciences et Techniques, LCSN, Limoges, France
Martin, Patick; University of Artois, Unité Transformations & Agroressources, Béthune, France
Popa, Marcel; Gheorghe Asachi Technical University, Faculty of Chemical Engineering and Protection of the Environment, Department of Natural and Synthetic Polymers, Iaşi, Romania > University Apollonia, Faculty of Dental Medicine, Iasi, Romania > Academy of Romanian Scientists, Bucharest, Romania
Language :
English
Title :
Curcumin-loaded polysaccharides-based complex particles obtained by polyelectrolyte complexation and ionic gelation. I-Particles obtaining and characterization
Publication date :
15 March 2020
Journal title :
International Journal of Biological Macromolecules
Grykiewicz, G., Silfirski, P., Curcumin and curcuminoids in quest for medicinal status. Acta Biochim. Pol. 59 (2012), 201–212 http://www.actabp.pl/pdf/2_2012/201.pdf.
Gupta, S.C., Prasad, S., Kim, J.H., Patchva, S., Webb, L.J., Priyadarsini, I.K., Aggarwal, B.B.N., Multitargeting by curcumin as revealed by molecular interaction studies. Nat. Prod. Rep. 28 (2011), 1937–1955, 10.1039/C1NP00051A.
He, X., Yang, L., Wang, M., Zhuang, X., Huang, R., Zhu, R., Wang, S., Targeting the endocannabinoid/CB1 receptor system for treating major depression through antidepressant activities of curcumin and dexanabinol-loaded solid lipid nanoparticles. Cell. Physiol. Biochem. 42 (2017), 2281–2294, 10.1159/000480001.
Gupta, S.C., Patchva, S., Aggarwal, B.B., Therapeutic roles of curcumin: lessons learned from clinical trials. AAPS J. 15 (2013), 195–218, 10.1208/s12248-012-9432-8.
Wilken, R., Veena, M.S., Wang, M.B., Srivatsan, E.S., Curcumin: a review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Mol. Cancer 10 (2011), 12–31, 10.1186/1476-4598-10-12.
Yang, W., Fu, J., Yu, M., Wang, D., Rong, Y., Yao, P., Nussler, A.K., Yan, H., Liu, L.G., Effects of three kinds of curcuminoids on anti-oxidative system and membrane deformation of human peripheral blood erythrocytes in high glucose levels. Cell. Physiol. Biochem. 35 (2015), 789–802, 10.1159/000369738.
Schneider, C., Gordon, O.N., Edwards, R.L., Luis, P.B., Degradation of curcumin: from mechanism to biological implications. J. Agric. Food Chem. 63 (2015), 7606–7614, 10.1021/acs.jafc.5b00244.
Ng, S.C., Shi, H.Y., Hamidi, N., Underwood, F.E., Tang, W., Benchimol, E.I., Panaccione, R., Ghosh, S., Wu, J.C.Y., Chan, F.K.L., Sung, J.J.Y., Kaplan, G.G., Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet 390 (2017), 2769–2778, 10.1016/S0140-6736(17)32448-0.
Brumatti, L.V., Marcuzzi, A., Tricarico, P.M., Zanin, V., Girardelli, M., Bianco, A.M., Curcumin and inflammatory bowel disease: potential and limits of innovative treatments. Molecules 19 (2014), 21127–21153, 10.3390/molecules191221127.
Burge, K., Gunasekaran, A., Eckert, J., Chaaban, H., Curcumin and intestinal inflammatory diseases: molecular mechanisms of protection. Int. J. Mol. Sci., 20, 2019, 1912, 10.3390/ijms20081912.
Aggarwal, B.B., Deb, L., Prasad, S., Curcumin differs from tetrahydrocurcumin for molecular targets, signaling pathways and cellular responses. Molecules 20 (2014), 185–205, 10.3390/molecules20010185.
Hoehle, S.I., Pfeiffer, E., Solyom, A.M., Metzler, M., Metabolism of curcuminoids in tissue slices and subcellular fractions from rat liver. J. Agric. Food Chem. 54 (2006), 756–764, 10.1021/jf058146a.
Pan, M.H., Huang, T.M., Lin, J.K., Biotransformation of curcumin through reduction and glucuronidation in mice. Drug Metab. Dispos. 27 (1999), 486–494 http://dmd.aspetjournals.org/content/27/4/486.
Nardo, L., Andreoni, A., Masson, M., Haukvik, T., Tønnesen, H.H., Studies on curcumin and curcuminoids. XXXIX. Photophysical properties of bisdemethoxycurcumin. J. Fluoresc. 21 (2011), 627–635, 10.1007/s10895-010-0750-x.
Priyadarsini, K.I., The chemistry of curcumin: from extraction to therapeutic agent. Molecules 19 (2014), 20091–20112, 10.3390/molecules191220091.
Prasad, S., Tyagi, A.K., Aggarwal, B.B., Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: the golden pigment from golden spice. Cancer Res. Treat. 46 (2014), 2–18, 10.4143/crt.2014.46.1.2.
Burgos-Moron, E., Calderon-Montano, J.M., Salvador, J., Robles, A., Lopez-Lazaro, M., The dark side of curcumin. Int. J. Cancer 126 (2010), 1771–1775, 10.1002/ijc.24967.
Fadus, M.C., Lau, C., Bikhchandani, J., Lynch, H.T., Curcumin: an age-old anti-inflammatory and anti-neoplastic agent. J. Tradit. Complement. Med. 7 (2017), 339–346, 10.1016/j.jtcme.2016.08.002.
Myers, B.M., Smith, J.L., Graham, D.Y., Effect of red pepper and black pepper on the stomach. Am. J. Gastroenterol. 82 (1987), 211–214.
Srinivasan, K., Black pepper and its pungent principle-piperine: a review of diverse physiological effects. Crit. Rev. Food Sci. Nutr. 47 (2007), 735–748, 10.1080/10408390601062054.
Anand, P., Kunnumakkara, A.B., Newman, R.A., Aggarwal, B.B., Bioavailability of curcumin: problems and promises. Mol. Pharm. 4 (2007), 807–818, 10.1021/mp700113r.
Jaisamut, P., Wiwattanawongsa, K., Graidist, P., Sangsen, Y., Wiwattanapatapee, R., Enhanced oral bioavailability of curcumin using a supersaturatable self-microemulsifying system incorporating a hydrophilic polymer; in vitro and in vivo investigations. AAPS PharmSciTech 19 (2017), 730–740, 10.1208/s12249-017-0857-3.
Karri, V.V., Kuppusamy, G., Talluri, S.V., Mannemala, S.S., Kollipara, R., Wadhwani, A.D., Mulukutla, S., Raju, K.R., Malayandi, R., Curcumin loaded chitosan nanoparticles impregnated into collagen-alginate scaffolds for diabetic wound healing. Int. J. Biol. Macromol. 93 (2016), 1519–1529, 10.1016/j.ijbiomac.2016.05.038.
Stohs, S.J., Ji, J., Bucci, L.R., Preuss, H.G.A., Comparative pharmacokinetic assessment of a novel highly bioavailable curcumin formulation with 95% curcumin: a randomized, double-blind, crossover study. J. Am. Coll. Nutr. 37 (2018), 51–59, 10.1080/07315724.2017.1358118.
Kurniawan, A., Gunawan, F., Nugraha, A.T., Ismadji, S., Wang, M.-J., Biocompatibility and drug release behavior of curcumin conjugated gold nanoparticles from aminosilane-functionalized electrospun poly(N-vinyl-2-pyrrolidone) fibers. Int. J. Pharm. 516 (2017), 158–169, 10.1016/j.ijpharm.2016.10.067.
Xie, X., Tao, Q., Zou, Y., Zhang, F., Guo, M., Wang, Y., Wang, H., Zhou, Q., Yu, S., PLGA nanoparticles improve the oral bioavailability of curcumin in rats: characterizations mechanisms. J. Agric. Food Chem. 59 (2011), 9280–9289, 10.1021/jf202135j.
Ren, G., Clancy, C., Tamer, T.M., Schaller, B., Walker, G.M., Collins, M.N., Cinnamyl O-amine functionalized chitosan as a new excipient in direct compressed tablets with improved drug delivery. Int. J. Biol. Macromol. 141 (2019), 936–946, 10.1016/j.ijbiomac.2019.08.265.
Ghalandarlaki, N., Alizadeh, A.M., Ashkani-Esfahani, S., Nanotechnology-applied curcumin for different diseases therapy. Biomed. Res. Int., 2014, 2014, 394264, 10.1155/2014/394264.
Honarkar, H., Barikani, M., Applications of biopolymers I: chitosan. Monatsh. Chem. 140 (2009), 1403–1420, 10.1007/s00706-009-0197-4.
Zargar, V., Asghari, M., Dashti, A., A review on chitin and chitosan polymers: structure, chemistry, solubility, derivatives, and applications. ChemBioEng Rev 2 (2015), 204–226, 10.1002/cben.201400025.
Mohammed, M.A., Syeda, J.T.M., Wasan, K.M., Wasan, E.K., An overview of chitosan nanoparticles and its application in non-parenteral drug delivery. Pharmaceutics 9 (2017), 1–26, 10.3390/pharmaceutics9040053.
ParizeI, A.L., Stulzer, H.K., Marghetti Laranjeira, M.C., Costa Brighente, I.M. da, Rozone de Souza, T.C., Evaluation of chitosan microparticles containing curcumin and crosslinked with sodium tripolyphosphate produced by spray drying. Quim Nova 35 (2012), 1127–1132, 10.1590/S0100-40422012000600011.
Wan, S., Sun, Y., Sun, L., Tan, F., Chitosan microparticles for oral bioavailability improvement of the hydrophobic drug curcumin. Pharmazie 67 (2012), 525–528, 10.1691/ph.2012.1124.
Guzman-Villanueva, D., El-Sherbiny, I.M., Herrera-Ruiz, D., Smyth, H.D.C., Design and in vitro evaluation of a new nano-microparticulate system for enhanced aqueous-phase solubility of curcumin. Biomed. Res. Int., 2013, 2013, 724763, 10.1155/2013/724763.
Chuah, L.H., Billa, N., Roberts, C.J., Burley, J.C., Manickam, S., Curcumin-containing chitosan nanoparticles as a potential mucoadhesive delivery system to the colon. Pharm. Dev. Technol. 18 (2011), 591–599, 10.3109/10837450.2011.640688.
O'Neill, M.A., Selvendran, R.R., Morris, V.J., Structure of the acidic extracellular gelling polysaccharide produced by Pseudomonas elodea. Carbohydr. Res. 124 (1983), 123–133, 10.1016/0008-6215(83)88360-8.
Moslemy, P., Neufeld, R.J., Millette, D., Guiot, S.R., Transport of gellan gum microbeads through sand: an experimental evaluation for encapsulated cell bioaugmentation. J. Environ. Manag. 69 (2003), 249–259, 10.1016/j.jenvman.2003.09.003.
C.E. Iurciuc (Tincu), A. Savin, C. Lungu, P. Martin, M. Popa, Gellan. Food applications, cell. Chem. Technol. 50 (2016) 1–13. http://www.cellulosechemtechnol.ro/pdf/CCT1(2016)/p.1-13.pdf.
Singh, B.N., Trombetta, L.D., Kim, K.H., Biodegradation behavior of gellan gum in simulated colonic media. Pharm. Dev. Technol. 9 (2004), 399–407, 10.1081/PDT-200035793.
Yang, F., Xia, S., Tan, C., Zhang, X., Preparation and evaluation of chitosan-calcium-gellan gum beads for controlled release of protein. Eur. Food Res. Technol. 237 (2013), 467–479, 10.1007/s00217-013-2021-y.
Prezotti, F.G., Boni, F.I., Ferreira, N.N., Silva, D.S., Campana-Filho, S.P., Almeida, A., Vasconcelos, T., Gremião, M.P.D., Cury, B.S.F., Sarmento, B., Gellan gum/pectin beads are safe and efficient for the targeted colonic delivery of resveratrol. Polymers 10 (2018), 50–64, 10.3390/polym10010050.
Campo, V.L., Kawano, D.F., da Silva, D.B., Carvalho, I., Carrageenans: biological properties, chemical modifications, and structural analysis – a review. Carbohydr. Polym. 77 (2009), 167–180, 10.1016/j.carbpol.2009.01.020.
Zainal Ariffin, S.H., Yeen, W.W., Zainol Abidin, I.Z., Megat Abdul Wahab, R., Zainal Ariffin, Z., Senafi, S., Cytotoxicity effect of degraded and undegraded kappa and iota carrageenan in the human intestine and liver cell lines. BMC Complement. Altern. Med. 14 (2014), 508–524, 10.1186/1472-6882-14-508.
Li, C., Hein, S., Wang, K., Chitosan-carrageenan polyelectrolyte complex for the delivery of protein drugs. Int Sch Res Notices Biomaterials, 2013, 2013, 629807, 10.5402/2013/629807.
Raval, A., Bahadur, P., Raval, A., Effect of nonionic surfactants in release media on accelerated in-vitro release profile of sirolimus-eluting stents with biodegradable polymeric coating. J. Pharm. Anal. 8 (2018), 45–54, 10.1016/j.jpha.2017.06.002.
Poncelet, D., Lencki, R., Beaulieu, C., Halle, J.P., Neufeld, R.J., Fournier, A., Production of alginate beads by emulsification/internal gelation. I. Methodology. Appl. Microbiol. Biotechnol. 38 (1992), 39–45, 10.1007/BF00169416.
Fu, Y., Kao, W.J., Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric delivery systems. Expert Opin. Drug Deliv. 7 (2010), 429–444, 10.1517/17425241003602259.
El-Sherbiny, I.M., Smyth, H.D.C., Controlled release pulmonary administration of curcumin using swellable biocompatible microparticles. Mol. Pharm. 9 (2012), 269–280, 10.1021/mp200351y.
Betancourt, T., Pardo, J., Soo, K., Peppas, N.A., Characterization of pH-responsive hydrogels of poly(itaconic acid-g-ethylene glycol) prepared by UV-initiated free radical polymerization as biomaterials for oral delivery of bioactive agents. J. Biomed. Mater. Res. A 93 (2010), 175–188, 10.1002/jbm.a.32510.
Malana, M.A., Bukhari, J.-D., Zohra, R., Synthesis, swelling behavior, and network parameters of novel chemically crosslinked poly (acrylamide-co-methacrylate-co-acrylic acid) hydrogels. Designed Monomers and Polymers 17 (2014), 266–274, 10.1080/15685551.2013.840501.
Luzar, A., Chandler, D., Hydrogen-bond kinetics in liquid water. Nature 379 (1996), 55–57 https://www.nature.com/articles/379055a0.
Segale, L., Giovannelli, L., Mannina, P., Pattarino, F., Calcium alginate and calcium alginate-chitosan beads containing celecoxib solubilized in a self-emulsifying phase. Scientifica, 2016, 2016, 5062706, 10.1155/2016/5062706.
Nesrinne, S., Djamel, A., Synthesis, characterization and rheological behavior of pH sensitive poly(acrylamide-co-acrylic acid) hydrogels. Arab. J. Chem. 10 (2017), 539–547, 10.1016/j.arabjc.2013.11.027.
Iurciuc (Tincu), C.E., Savin, A., Atanase, L.I., Martin, P., Popa, M., Physico-chemical characteristics and fermentative activity of the hydrogel particles based on polysaccharides mixture with yeast cells immobilized, obtained by ionotropic gelation. Food Bioprod. Process. 104 (2017), 104–123, 10.1016/j.fbp.2017.05.003.
Stanley, N., FAO corporate document repository. Chapter 3: production, properties and uses of carrageenan in FMC Corporation, marine colloids division, 5 maple street, Rockland Maine 04841, USA. http://www.fao.org/3/X5822E/x5822e05.htm, 2011.
Ritger, P.L., Peppas, N.A., A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J. Control. Release 5 (1987), 23–36, 10.1016/0168-3659(87)90034-4.
Kamaly, N., Yameen, B., Wu, J., Farokhzad, O.C., Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem. Rev. 116 (2016), 2602–2663, 10.1021/acs.chemrev.5b00346.
Mircioiu, C., Voicu, V., Anuta, V., Tudose, A., Celia, C., Paolino, D., Fresta, M., Sandulovici, R., Mircioiu, I., Mathematical modeling of release kinetics from supramolecular drug delivery systems. Pharmaceutics, 11, 2019, 140, 10.3390/pharmaceutics11030140.
Kumar, P., Mishra, B., Colon targeted drug delivery systems—an overview. Curr. Drug Deliv. 5 (2008), 186–198 http://www.eurekaselect.com/node/67212/article.
Sabra, R., Billa, N., Roberts, C.J., An augmented delivery of the anticancer agent, curcumin, to the colon. React. Funct. Polym. 123 (2018), 54–60, 10.1016/j.reactfunctpolym.2017.12.012.