[en] Space‐use and foraging strategies are important facets to consider in regard to the
ecology and conservation of primates. For this study, we documented movement,
ranging, and foraging patterns of northern pigtailed macaques (Macaca leonina) for
14 months in a degraded habitat with old growth Acacia and Eucalyptus plantations
at the Sakaerat Biosphere Reserve in northeastern Thailand. We used hidden
Markov models and characteristic hull polygons to analyze these patterns in regard
to fruit availability. Macaques' home range (HR) was 599 ha and spanned through a
natural dry‐evergreen forest (DEF), and plantation forest. Our results showed that
active foraging increased with higher fruit availability in DEF. Macaques changed to
a less continuous behavioral state during periods of lower fruit availability in DEF,
repeatedly moving from foraging to transiting behavior, while extending their HR
further into plantation forest and surrounding edge areas. Concomitantly, macaques
shifted their diet from fleshy to dry fruit such as the introduced Acacia species. Our
results showed that the diet and movement ecology adaptations of northern pigtailed
macaques were largely dependent on availability of native fruits, and reflected
a “high‐cost, high‐yield” foraging strategy when fresh food was scarce and dry fruit
was available in plantation forest. Conversely, wild‐feeding northern pigtailed macaque
populations inhabiting pristine habitat approached a “low‐cost, low‐yield”
foraging strategy. Our results outline the effects of habitat degradation on foraging
strategies and show how a flexible species can cope with its nutritional
requirements.
José‐Domínguez, Juan Manuel; King Mongkut's University of Technology > Conservation Ecology Program
Huynen, Marie-Claude ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Biologie du comportement - Ethologie et psychologie animale
Hambuckers, Alain ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Biologie du comportement - Ethologie et psychologie animale
Poncin, Pascal ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Biologie du comportement - Ethologie et psychologie animale
Savini, Tommaso ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Biologie du comportement - Ethologie et psychologie animale
Brotcorne, Fany ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Biologie du comportement - Ethologie et psychologie animale
Language :
English
Title :
Northern pigtailed macaques rely on old growth plantations to offset low fruit availability in a degraded forest fragment
Publication date :
May 2020
Journal title :
American Journal of Primatology
ISSN :
0275-2565
eISSN :
1098-2345
Publisher :
John Wiley & Sons, Hoboken, United States - New Jersey
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Agetsuma, N., & Noma, N. (1995). Rapid shifting of foraging pattern by Yakushima macaques (Macaca fuscata yakui) response to heavy fruiting of Myrica rubra. International Journal of Primatology, 16(2), 247–260. https://doi.org/10.1007/BF02735480
Albert, A., Hambuckers, A., Culot, L., Savini, T., & Huynen, M. C. (2013). Frugivory and seed dispersal by northern pigtailed macaques (Macaca leonina), in Thailand. International Journal of Primatology, 34(1), 170–193. https://doi.org/10.1007/s10764-012-9649-5
Albert, A., Huynen, M. C., Savini, T., & Hambuckers, A. (2013). Influence of food resources on the ranging pattern of northern pig-tailed macaques (Macaca leonina). International Journal of Primatology, 34(4), 696–713. https://doi.org/10.1007/s10764-013-9690-z
Albert, A., McConkey, K., Savini, T., & Huynen, M. C. (2014). The value of disturbance-tolerant cercopithecine monkeys as seed dispersers in degraded habitats. Biological Conservation, 170, 300–310. https://doi.org/10.1016/j.biocon.2013.12.016
Almeida-Rocha, J. M. d, Peres, C. A., & Oliveira, L. C. (2017). Primate responses to anthropogenic habitat disturbance: A pantropical meta-analysis. Biological Conservation, 215, 30–38. https://doi.org/10.1016/j.biocon.2017.08.018
Altmann, J. (1974). Observational study of behavior: Sampling methods. Behaviour, 49, 227–267.
Arroyo-Rodríguez, V., & Mandujano, S. (2006). Forest fragmentation modifies habitat quality for Alouatta palliata. International Journal of Primatology, 27(4), 1079–1096. https://doi.org/10.1007/s10764-006-9061-0
Boonratana, R., Das, J., Yongcheng, L., Htun, S., & Timmins, R. J. (2008). Macaca leonina. The IUCN Red List of Threatened Species 2008, e. T39792A10257933, 10.2305/IUCN.UK.2008.RLTS.T39792A10257933.en
Campera, M., Serra, V., Balestri, M., Barresi, M., Ravaolahy, M., Randriatafika, F., & Donati, G. (2014). Effects of habitat quality and seasonality on ranging patterns of collared brown lemur (Eulemur collaris) in littoral forest fragments. International Journal of Primatology, 35(5), 957–975. https://doi.org/10.1007/s10764-014-9780-6
Chapman, C. A., & Chapman, L. J. (2000). Determinants of Group Size in Primates: The Importance of Travel Costs. In S. Boinski & P. A. Garber (Eds.), On the Move: How and Why Animals Travel in Groups (pp. 24–42). University of Chicago Press.
Choudhury, A. (2008). Ecology and behaviour of the pig-tailed macaque Macaca nemestrina leonina in some forests of Assam in north-east India. Journal of the Bombay Natural History Society, 105, 279–291.
Di Bitetti, M. S. (2001). Home-range use by the tufted capuchin monkey (Cebus apella nigritus) in a subtropical rainforest of Argentina. Journal of Zoology, 253, 33–45. https://doi.org/10.1017/S0952836901000048
Downs, J. A., & Horner, M. W. (2009). A characteristic-hull based method for home range estimation. Transactions in GIS, 13(5–6), 527–537. https://doi.org/10.1111/j.1467-9671.2009.01177.x
Estrada, A., Garber, P. A., Rylands, A. B., Roos, C., Fernandez-Duque, E., Fiore, A., & Li, B. (2017). Impending extinction crisis of the world's primates: Why primates matter. Science Advances, 3(1):e1600946. https://doi.org/10.1126/sciadv.1600946
Fan, P. F., Ni, Q. Y., Sun, G. Z., Huang, B., & Jiang, X. L. (2008). Seasonal variations in the activity budget of Nomascus concolor jingdongensis at Mt. Wuliang, Central Yunnan, China: Effects of diet and temperature. International Journal of Primatology, 29(4), 1047–1057.
Fox, J., & Weinberg, S. (2011). An R Companion to Applied Regression. Newbury Park, California: Sage Publications.
Gage, N. A., & Lewis, T. J. (2013). Analysis of effect for single-case design research. Journal of Applied Sport Psychology, 25(1), 46–60. https://doi.org/10.1080/10413200.2012.660673
Garland, T. (1983). Scaling the ecological cost of transport to body mass in terrestrial mammals. The American Naturalist, 121(4), 571–587. https://doi.org/10.1086/284084
Gibson, L., Lee, T. M., Koh, L. P., Brook, B. W., Gardner, T. A., Barlow, J., & Sodhi, N. S. (2011). Primary forests are irreplaceable for sustaining tropical biodiversity. Nature, 478(7369), 378–381.
Hanya, G., Kiyono, M., Yamada, A., Suzuki, K., Furukawa, M., Yoshida, Y., & Chijiiwa, A. (2006). Not only annual food abundance but also fallback food quality determines the Japanese macaque density: Evidence from seasonal variations in home range size. Primates, 47(3), 275–278. https://doi.org/10.1007/s10329-005-0176-2
Harrison, M. J. (1985). Time budget of the green monkey, Cercopithecus sabaeus: Some optimal strategies. International Journal of Primatology, 6(4), 351–376. https://doi.org/10.1007/BF02736383
Harrison, M. E., Vogel, E. R., Morrogh-bernard, H. C., & Van Noordwijk, M. A. (2009). Methods for calculating activity budgets compared: A case study using orangutans. American Journal of Primatology, 71, 353–358. https://doi.org/10.1002/ajp.20655
Hartmann, D. P., Gottman, J. M., Jones, R. R., Gardner, W., Kazdin, A. E., & Vaught, R. S. (1980). Interrupted time-series analysis and its application to behavioral data. Journal of Applied Behavior Analysis, 13(4), 543–559. https://doi.org/10.1901/jaba.1980.13-543
Hemingway, C. A., & Bynum, N. (2005). The Influence of Seasonality on Primate Diet and Ranging. In D. K. Brockman & C. P. van Schaik (Eds.), Seasonality in Primates: Studies of Living and Extinct Human and Non-Human Primates (pp. 57–104). Cambridge University Press.
Hill, J. L., & Curran, P. J. (2003). Area, shape and isolation of tropical forest fragments: Effects on tree species diversity and implications for conservation. Journal of Biogeography, 30, 1391–1403. https://doi.org/10.1046/j.1365-2699.2003.00930.x
Isaac, N. J. B., & Cowlishaw, G. (2004). How species respond to multiple extinction threats. Proceedings of the Royal Society B: Biological Sciences, 271(1544), 1135–1141. https://doi.org/10.1098/rspb.2004.2724
José-Domínguez, J. M., Huynen, M. C., Garcia, C. J., Albert-Daviaud, A., Savini, T., & Asensio, N. (2015). Non-territorial macaques can range like territorial gibbons when partially provisioned with food. Biotropica, 47(6), 733–744. https://doi.org/10.1111/btp.12256
José-Domínguez, J. M., Savini, T., & Asensio, N. (2015). Ranging and site fidelity in northern pigtailed macaques (Macaca leonina) over different temporal scales. American Journal of Primatology, 77(8), 841–853. https://doi.org/10.1002/ajp.22409
Lacher, T. E., Willig, M. R., & Mares, M. A. (1982). Food preference as a function of resource abundance with multiple prey types: An experimental analysis of optimal foraging theory. The American Naturalist, 120(3), 297–316. https://doi.org/10.1086/283992
Laurance, W. F. (2007). Have we overstated the tropical biodiversity crisis? Trends in Ecology and Evolution, 22(2), 65–70. https://doi.org/10.1016/j.tree.2006.09.014
Laurance, W. F., Delamonica, P., Laurance, S. G., Vasconcelos, H. L., & Lovejoy, T. E. (2000). Rainforest fragmentation kills big trees. Nature, 404(6780), 836. https://doi.org/10.1038/35009032
Leos-Barajas, V., Gangloff, E. J., Adam, T., Langrock, R., van Beest, F. M., Nabe-Nielsen, J., & Morales, J. M. (2017). Multi-scale modeling of animal movement and general behavior data using hidden Markov models with hierarchical structures. Journal of Agricultural, Biological, and Environmental Statistics, 22(3), 232–248. https://doi.org/10.1007/s13253-017-0282-9
Li, M., & Bolker, B. M. (2017). Incorporating periodic variability in hidden Markov models for animal movement. Movement Ecology, 5(1), 1–12. https://doi.org/10.1186/s40462-016-0093-6
Li, Z., & Rogers, M. E. (2005). Habitat quality and range use of white-headed langurs in Fusui, China. Folia Primatologica, 76(4), 185–195. https://doi.org/10.1159/000086020
Markham, A. C., Gesquiere, L. R., Alberts, S. C., & Altmann, J. (2015). Optimal group size in a highly social mammal. Proceedings of the National Academy of Sciences, 112(48), 14882–14887. https://doi.org/10.1073/pnas.1517794112
McKellar, A. E., Langrock, R., Walters, J. R., & Kesler, D. C. (2015). Using mixed hidden Markov models to examine behavioral states in a cooperatively breeding bird. Behavioral Ecology, 26(1), 148–157. https://doi.org/10.1093/beheco/aru171
Mekonnen, A., Fashing, P. J., Bekele, A., Hernandez-Aguilar, R. A., Rueness, E. K., Nguyen, N., & Stenseth, N. C. (2017). Impacts of habitat loss and fragmentation on the activity budget, ranging ecology and habitat use of Bale monkeys (Chlorocebus djamdjamensis) in the southern Ethiopian Highlands. American Journal of Primatology, 79(7), 1–13. https://doi.org/10.1002/ajp.22644
Mekonnen, A., Fashing, P. J., Bekele, A., Hernandez-aguilar, R. A., Rueness, E. K., & Stenseth, N. C. (2018). Dietary flexibility of Bale monkeys (Chlorocebus djamdjamensis) in southern Ethiopia: effects of habitat degradation and life in fragments. BMC Ecology, 18(4), 1–20. https://doi.org/10.1186/s12898-018-0161-4
Mendiratta, U., Kumar, A., Mishra, C., & Sinha, A. (2009). Winter ecology of the Arunachal macaque Macaca munzala in Pangchen Valley, western Arunachal Pradesh, northeastern India. American Journal of Primatology, 71(11), 939–947. https://doi.org/10.1002/ajp.20734
Michelot, T., Langrock, R., Patterson, T. A., & McInerny, G. (2016). moveHMM: An R package for the statistical modelling of animal movement data using hidden Markov models. Methods in Ecology and Evolution, 7, 1308–1315. https://doi.org/10.1111/2041-210X.12578
Morales, J. M., Haydon, D. T., Frair, J., Holsinger, K. E., & Fryxell, J. M. (2004). Extracting more out of relocation data: Building movement models as mixtures of random walks. Ecology, 85(9), 2436–2445. https://doi.org/10.1890/03-0269
Nabe-Nielsen, J., Tougaard, J., Teilmann, J., Lucke, K., & Forchhammer, M. C. (2013). How a simple adaptive foraging strategy can lead to emergent home ranges and increased food intake. Oikos, 122, 1307–1316. https://doi.org/10.1111/j.1600-0706.2013.00069.x
Nathan, R. (2008). An emerging movement ecology paradigm. Proceedings of the National Academy of Sciences, 105(49), 19050–19051. https://doi.org/10.1073/pnas.0808918105
Oliver, K., Ngoprasert, D., & Savini, T. (2019). Slow loris density in a fragmented, disturbed dry forest, north-east Thailand. American Journal of Primatology, 81, e22957. https://doi.org/10.1002/ajp.22957
Pengfei, F., Garber, P., Chi, M., Guopeng, R., Changming, L., Xiaoyong, C., & Junxing, Y. (2014). High dietary diversity supports large group size in Indo-Chinese gray langurs in Wuliangshan, Yunnan, China. American Journal of Primatology, 77, 1–13. https://doi.org/10.1002/ajp.22361
Pinto, L. P., & Setz, E. Z. F. (2004). Diet of Alouatta belzebul discolor in an amazonian rain forest of northern Mato Grosso State. International Journal of Primatology, 25(6), 1197–1211. https://doi.org/10.1023/B:IJOP.0000043958.75534.7f
R Development Core Team. (2005). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL: http://www.R-project.org
Ramos-Fernandez, G., Smith Aguilar, S. E., Schaffner, C. M., Vick, L. G., & Aureli, F. (2013). Site fidelity in space use by spider monkeys (Ateles geoffroyi) in the Yucatan Peninsula, Mexico. PLoS One, 8(5), e62813.
Richter, C., Taufiq, A., Hodges, K., Ostner, J., & Schülke, O. (2013). Ecology of an endemic primate species (Macaca siberu) on Siberut Island, Indonesia. SpringerPlus, 2(137), 1–26. https://doi.org/10.1186/2193-1801-2-137
Riley, E. P. (2007). Flexibility in diet and activity patterns of Macaca tonkeana in response to anthropogenic habitat Alteration. International Journal of Primatology, 28(1), 107–133. https://doi.org/10.1007/s10764-006-9104-6
Riley, E. P. (2008). Ranging patterns and habitat use of Sulawesi Tonkean macaques (Macaca tonkeana) in a human-modified habitat. American Journal of Primatology, 70(7), 670–679. https://doi.org/10.1002/ajp.20543
Ruppert, N., Holzner, A., See, K. W., Gisbrecht, A., & Beck, A. (2018). Activity budgets and habitat use of wild southern pig-tailed macaques (Macaca nemestrina) in oil palm plantation and forest. International Journal of Primatology, 1–15. https://doi.org/10.1007/s10764-018-0032-z
Santhosh, K., Kumara, H. N., Velankar, A. D., & Sinha, A. (2015). Ranging behavior and resource use by lion-tailed macaques (Macaca silenus) in selectively logged forests. International Journal of Primatology, 36(2), 288–310. https://doi.org/10.1007/s10764-015-9824-6
Seigler, D. S. (2003). Phytochemistry of Acacia—sensu lato. Biochemical Systematics and Ecology, 31(8), 845–873. https://doi.org/10.1016/S0305-1978(03)00082-6
Tesfaye, D., Fashing, P. J., Bekele, A., Mekonnen, A., & Atickem, A. (2013). Ecological flexibility in Boutourlini's blue monkeys (Cercopithecus mitis boutourlinii) in Jibat forest, Ethiopia: A comparison of habitat use, ranging behavior, and diet in intact and fragmented forest. International Journal of Primatology, 34(3), 615–640. https://doi.org/10.1007/s10764-013-9684-x
Thai Institute of Scientific and Technological Research. (2017). Meteorological observations. Retrieved in February 13 2019 from http://www.tistr.or.th/sakaerat
van Schaik, C. P., van Noordwijk, M. A., de Boer, R. J., & den Tonkelaar, I. (1983). The effect of group size on time budgets and social behavior in wild long-tailed macaques (Macaca fascicularis). Behavioral Ecology and Sociobiology, 13, 173–181. https://doi.org/10.1007/BF00299920
van Schaik, C. P., & Brockman, D. K. (2005). Seasonality in Primate Ecology, Reproduction, and Life History: An Overview. In D. K. Brockman & C. P. van Schaik (Eds.), Seasonality in Primates: Studies of Living and Extinct Human and Non-Human Primates (pp. 3–20). Cambridge University Press.
Wartmann, F. M., Juárez, C. P., & Fernandez-Duque, E. (2014). Size, site fidelity, and overlap of home ranges and core areas in the socially monogamous owl monkey (Aotus azarae) of northern Argentina. International Journal of Primatology, 35(5), 919–939. https://doi.org/10.1007/s10764-014-9771-7
Whoriskey, K., Auger-Méthé, M., Albertsen, C. M., Whoriskey, F. G., Binder, T. R., Krueger, C. C., & Mills Flemming, J. (2017). A hidden Markov movement model for rapidly identifying behavioral states from animal tracks. Ecology and Evolution, 7(7), 2112–2121. https://doi.org/10.1002/ece3.2795
Wimberger, K., Nowak, K., & Hill, R. A. (2017). Reliance on exotic plants by two groups of threatened Samango monkeys, Cercopithecus albogularis labiatus, at their southern range limit. International Journal of Primatology, 38(2), 151–171. https://doi.org/10.1007/s10764-016-9949-2
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.